Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/112156
Título: | TGCRbNW: a dataset for runner bib number detection (and recognition) in the wild | Autores/as: | Hernández-Carrascosa, Pablo Peñate Sánchez, Adrián Lorenzo-Navarro, Javier Freire-Obregón, David Castrillón-Santana, Modesto |
Clasificación UNESCO: | 220990 Tratamiento digital. Imágenes | Fecha de publicación: | 2020 | Editor/a: | Institute of Electrical and Electronics Engineers (IEEE) | Publicación seriada: | Proceedings - International Conference on Pattern Recognition | Conferencia: | 25th International Conference on Pattern Recognition (ICPR 2020) | Resumen: | Racing bib number (RBN) detection and recognition is a specific problem related to text recognition in natural scenes. In this paper, we present a novel dataset created after registering participants in a real ultrarunning competition which comprises a wide range of acquisition conditions in five different recording points, including nightlight and daylight. The dataset contains more than 3K samples of over 400 different individuals. The aim is to provide an”in the wild” benchmark for both RBN detection and recognition problems. To illustrate the present difficulties, the dataset is evaluated for RBN detection using different Faster R-CNN specific detection models, filtering its output with heuristics based on body detection to improve the overall detection performance. Initial results are promising, but there is still significant room for improvement. And detection is just the first step to accomplish”in the wild” RBN recognition. | URI: | http://hdl.handle.net/10553/112156 | ISBN: | 978-1-7281-8808-9 | ISSN: | 1051-4651 | DOI: | 10.1109/ICPR48806.2021.9412220 | Fuente: | Proceedings - International Conference on Pattern Recognition [ISSN 1051-4651], p. 9445-9451, (Enero 2020) |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.