Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/112146
DC FieldValueLanguage
dc.contributor.authorFernández-López, Pabloen_US
dc.contributor.authorSuárez-Araujo, Carmen Pazen_US
dc.contributor.authorGarcía Báez, Patricioen_US
dc.contributor.authorSuárez Díaz, Franciscoen_US
dc.contributor.authorNavarro-Mesa, Juan L.en_US
dc.contributor.authorPérez-Acosta, Guillermoen_US
dc.contributor.authorBlanco-López, Joséen_US
dc.date.accessioned2021-10-06T10:32:45Z-
dc.date.available2021-10-06T10:32:45Z-
dc.date.issued2021en_US
dc.identifier.isbn978-3-030-85029-6en_US
dc.identifier.issn0302-9743en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/112146-
dc.description.abstractNowadays there is a world pandemic of a challenging respiratory illness, COVID-19. A large part of COVID-19 patients evolves to severe or fatal complications and require an ICU admission. COVID-19 mortality rate approaches 30% due to complications such as obstruction of the trachea and bronchi of patients during the ICU stay. An endotracheal obstruction occurring during any moment in a COVID-19 patient ICU stay is one of the most complicated situations that clinicians must face and solve. Therefore, it is very important to know in advance when a COVID-19 patient could enter in the pre-obstruction zone. In this work we present an intelligent computing solution to predict endotracheal obstruction for COVID-19 patients in ICU. It is called the Binomial Gate LSTM (BigLSTM), a new and innovative deep modular neural architecture based on the recurrent neural network LSTM. Its main feature is its ability to handle missing data and to deal with time series with no regular sample frequency. These are the main characteristics of the BigLSTM information environment. This ability is implemented in BigLSTM by an information redundancy injection mechanism and how it copes with time control. We applied BigLSTM with first wave COVID-19 patients in ICU of Complejo Hospitalario Universitario Insular Materno Infantil. Encouraging results, even while working with a very small data set, indicate that our developed computing solution is going forwards towards an efficient intelligent prediction system which is very appropriate for this kind of problem.en_US
dc.languageengen_US
dc.publisherSpringeren_US
dc.relationAplicación de técnicas de machine learning para la detección temprana de obstrucción del tubo endotracheal en pacientes COVID-19 en UCIen_US
dc.relation.ispartofLecture Notes in Computer Scienceen_US
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [ISSN 0302-9743], v. 12861 LNCS, p. 61-73, (Enero 2021)en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherCovid-19en_US
dc.subject.otherDeep Learningen_US
dc.subject.otherEndotracheal Obstructionen_US
dc.subject.otherForecastingen_US
dc.subject.otherLSTMen_US
dc.subject.otherMissing Dataen_US
dc.subject.otherRecurrent Neural Networksen_US
dc.titleToward an intelligent computing solution for endotracheal obstruction prediction in COVID-19 patients in ICUen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference16th International Work-Conference on Artificial Neural Networks, IWANN 2021en_US
dc.identifier.doi10.1007/978-3-030-85030-2_6en_US
dc.identifier.scopus85115134798-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid6602579067-
dc.contributor.authorscopusid6603605708-
dc.contributor.authorscopusid6506952458-
dc.contributor.authorscopusid57262725400-
dc.contributor.authorscopusid9634488300-
dc.contributor.authorscopusid36126680500-
dc.contributor.authorscopusid6506029376-
dc.identifier.eissn1611-3349-
dc.description.lastpage73en_US
dc.description.firstpage61en_US
dc.relation.volume12861 LNCSen_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.identifier.eisbn978-3-030-85030-2-
dc.utils.revisionen_US
dc.date.coverdateEnero 2021en_US
dc.identifier.conferenceidevents129887-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,407
dc.description.sjrqQ2
dc.description.miaricds10,0
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate16-06-2021-
crisitem.event.eventsenddate18-06-2021-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.orcid0000-0002-2135-6095-
crisitem.author.orcid0000-0002-8826-0899-
crisitem.author.orcid0000-0002-9973-5319-
crisitem.author.orcid0000-0003-3860-3424-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameFernández López, Pablo Carmelo-
crisitem.author.fullNameSuárez Araujo, Carmen Paz-
crisitem.author.fullNameGarcía Baez, Patricio-
crisitem.author.fullNameSuárez Díaz, Francisco José-
crisitem.author.fullNameNavarro Mesa, Juan Luis-
Appears in Collections:Actas de congresos
Show simple item record

Page view(s)

90
checked on Feb 17, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.