Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/112124
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tinoco Caicedo, Diana Lucía | en_US |
dc.contributor.author | Feijoó-Villa, E. | en_US |
dc.contributor.author | Calle-Murillo, J. | en_US |
dc.contributor.author | Lozano-Medina, A. | en_US |
dc.contributor.author | Blanco Marigorta, Ana María | en_US |
dc.date.accessioned | 2021-10-05T13:53:17Z | - |
dc.date.available | 2021-10-05T13:53:17Z | - |
dc.date.issued | 2021 | en_US |
dc.identifier.isbn | 9780323885133 | en_US |
dc.identifier.issn | 1570-7946 | - |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/112124 | - |
dc.description.abstract | The advanced exergoeconomic analysis performed on different industrial processes is used to determine the avoidable exergy destruction and inversion cost rates in order to increase the rentability and sustainability of a factory. This study focuses on the performance of an advanced exergoeconomic analysis of a double effect evaporation process (DEEP) of coffee extract in a factory located in Ecuador. The avoidable and unavoidable exergy destruction cost rate and the avoidable investment cost rate were determined for each component by exergoeconomic balances using the results from the process simulation with the best operational conditions and with the worst operational conditions. The avoidable exergy destruction cost rate represents 18.3% of the overall exergy destruction cost rate. It was estimated that around 70.3 $/h of the overall operational costs could be saved if the exergetic efficiency of the first double effect evaporator (D-101) and the steam condenser (E-103) increased from 46.3% to 60.7% and 52.3% to 61.6%, respectively. Additionally, an increment of the initial concentration of soluble solids in the extract can reduce the avoidable operational costs by 15%. | en_US |
dc.language | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Computer Aided Chemical Engineering | - |
dc.source | Computer Aided Chemical Engineering [ISSN 1570-7946], v. 50, p. 353-358, (Enero 2021) | en_US |
dc.subject | 3309 Tecnología de los alimentos | en_US |
dc.subject.other | Advanced Exergoeconomic Analysis | en_US |
dc.subject.other | Avoidable Cost Rate | en_US |
dc.subject.other | Double Effect Evaporation | en_US |
dc.subject.other | Process Simulation | en_US |
dc.title | Advanced exergoeconomic analysis of a double effect evaporation process in an instant coffee plant | en_US |
dc.type | info:eu-repo/semantics/bookPart | en_US |
dc.type | BookPart | en_US |
dc.relation.conference | 31st European Symposium on Computer Aided Process Engineering (ESCAPE 31) | - |
dc.identifier.doi | 10.1016/B978-0-323-88506-5.50056-5 | en_US |
dc.identifier.scopus | 85110522733 | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.authorscopusid | 57115228200 | - |
dc.contributor.authorscopusid | 57226107464 | - |
dc.contributor.authorscopusid | 57226099410 | - |
dc.contributor.authorscopusid | 56688593700 | - |
dc.contributor.authorscopusid | 25652860100 | - |
dc.description.lastpage | 358 | en_US |
dc.description.firstpage | 353 | en_US |
dc.relation.volume | 50 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Capítulo de libro | en_US |
dc.identifier.eisbn | 978-0-323-88506-5 | - |
dc.identifier.eisbn | 978-0-323-98325-9 | - |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Enero 2021 | en_US |
dc.identifier.supplement | 1570-7946 | - |
dc.identifier.ulpgc | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-ING | en_US |
dc.contributor.buulpgc | BU-ING | en_US |
dc.contributor.buulpgc | BU-ING | en_US |
dc.contributor.buulpgc | BU-ING | en_US |
dc.description.sjr | 0,192 | |
dc.description.sjrq | Q3 | |
dc.description.miaricds | 5,0 | |
dc.description.spiq | Q1 | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.event.eventsstartdate | 06-06-2021 | - |
crisitem.event.eventsenddate | 09-06-2021 | - |
crisitem.author.dept | GIR Group for the Research on Renewable Energy Systems | - |
crisitem.author.dept | Departamento de Ingeniería Civil | - |
crisitem.author.dept | GIR Group for the Research on Renewable Energy Systems | - |
crisitem.author.dept | Departamento de Ingeniería de Procesos | - |
crisitem.author.orcid | 0000-0001-8583-9398 | - |
crisitem.author.orcid | 0000-0001-8478-3011 | - |
crisitem.author.orcid | 0000-0003-4635-7235 | - |
crisitem.author.parentorg | Departamento de Ingeniería Mecánica | - |
crisitem.author.parentorg | Departamento de Ingeniería Mecánica | - |
crisitem.author.fullName | Tinoco Caicedo, Diana Lucía | - |
crisitem.author.fullName | Lozano Medina, Alexis | - |
crisitem.author.fullName | Blanco Marigorta, Ana María | - |
Appears in Collections: | Capítulo de libro |
SCOPUSTM
Citations
4
checked on Dec 15, 2024
Page view(s)
71
checked on Feb 17, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.