Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/111876
DC FieldValueLanguage
dc.contributor.authorDíaz Cabrera, Moisésen_US
dc.contributor.authorMomina Moetesumen_US
dc.contributor.authorImran Siddiqien_US
dc.contributor.authorGennaro Vessioen_US
dc.date.accessioned2021-09-22T11:02:56Z-
dc.date.available2021-09-22T11:02:56Z-
dc.date.issued2021en_US
dc.identifier.issn0957-4174en_US
dc.identifier.urihttp://hdl.handle.net/10553/111876-
dc.description.abstractParkinson's disease (PD) is commonly characterized by several motor symptoms, such as bradykinesia, akinesia, rigidity, and tremor. The analysis of patients' fine motor control, particularly handwriting, is a powerful tool to support PD assessment. Over the years, various dynamic attributes of handwriting, such as pen pressure, stroke speed, in-air time, etc., which can be captured with the help of online handwriting acquisition tools, have been evaluated for the identification of PD. Motion events, and their associated spatio-temporal properties captured in online handwriting, enable effective classification of PD patients through the identification of unique sequential patterns. This paper proposes a novel classification model based on one-dimensional convolutions and Bidirectional Gated Recurrent Units (BiGRUs) to assess the potential of sequential information of handwriting in identifying Parkinsonian symptoms. One-dimensional convolutions are applied to raw sequences as well as derived features; the resulting sequences are then fed to BiGRU layers to achieve the final classification. The proposed method outperformed state-of-the-art approaches on the PaHaW dataset and achieved competitive results on the NewHandPD dataset.en_US
dc.languageengen_US
dc.relation.ispartofExpert Systems with Applicationsen_US
dc.sourceExpert Systems with Applications [ISSN 0957-4174], v. 168, 114405, (Abril 2021)en_US
dc.subject3304 Tecnología de los ordenadoresen_US
dc.subject320507 Neurologíaen_US
dc.subject.otherComputer-aided diagnosisen_US
dc.subject.otherDynamic handwriting analysisen_US
dc.subject.otherParkinson's diseaseen_US
dc.subject.otherRecurrent neural networksen_US
dc.titleSequence-based Dynamic Handwriting Analysis for Parkinson's Disease Detection with One-dimensional Convolutions and BiGRUsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typearticleen_US
dc.identifier.doi10.1016/j.eswa.2020.114405en_US
dc.identifier.scopus2-s2.0-85097459861-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcNoen_US
dc.contributor.buulpgcBU-BASen_US
dc.description.sjr2,07
dc.description.jcr8,665
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds11,0
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Física-
crisitem.author.orcid0000-0003-3878-3867-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameDíaz Cabrera, Moisés-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

60
checked on Nov 24, 2024

WEB OF SCIENCETM
Citations

48
checked on Nov 24, 2024

Page view(s)

133
checked on Nov 16, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.