Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/111876
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Díaz Cabrera, Moisés | en_US |
dc.contributor.author | Momina Moetesum | en_US |
dc.contributor.author | Imran Siddiqi | en_US |
dc.contributor.author | Gennaro Vessio | en_US |
dc.date.accessioned | 2021-09-22T11:02:56Z | - |
dc.date.available | 2021-09-22T11:02:56Z | - |
dc.date.issued | 2021 | en_US |
dc.identifier.issn | 0957-4174 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/111876 | - |
dc.description.abstract | Parkinson's disease (PD) is commonly characterized by several motor symptoms, such as bradykinesia, akinesia, rigidity, and tremor. The analysis of patients' fine motor control, particularly handwriting, is a powerful tool to support PD assessment. Over the years, various dynamic attributes of handwriting, such as pen pressure, stroke speed, in-air time, etc., which can be captured with the help of online handwriting acquisition tools, have been evaluated for the identification of PD. Motion events, and their associated spatio-temporal properties captured in online handwriting, enable effective classification of PD patients through the identification of unique sequential patterns. This paper proposes a novel classification model based on one-dimensional convolutions and Bidirectional Gated Recurrent Units (BiGRUs) to assess the potential of sequential information of handwriting in identifying Parkinsonian symptoms. One-dimensional convolutions are applied to raw sequences as well as derived features; the resulting sequences are then fed to BiGRU layers to achieve the final classification. The proposed method outperformed state-of-the-art approaches on the PaHaW dataset and achieved competitive results on the NewHandPD dataset. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Expert Systems with Applications | en_US |
dc.source | Expert Systems with Applications [ISSN 0957-4174], v. 168, 114405, (Abril 2021) | en_US |
dc.subject | 3304 Tecnología de los ordenadores | en_US |
dc.subject | 320507 Neurología | en_US |
dc.subject.other | Computer-aided diagnosis | en_US |
dc.subject.other | Dynamic handwriting analysis | en_US |
dc.subject.other | Parkinson's disease | en_US |
dc.subject.other | Recurrent neural networks | en_US |
dc.title | Sequence-based Dynamic Handwriting Analysis for Parkinson's Disease Detection with One-dimensional Convolutions and BiGRUs | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | article | en_US |
dc.identifier.doi | 10.1016/j.eswa.2020.114405 | en_US |
dc.identifier.scopus | 2-s2.0-85097459861 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.investigacion | Ciencias de la Salud | en_US |
dc.type2 | Artículo | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | No | en_US |
dc.contributor.buulpgc | BU-BAS | en_US |
dc.description.sjr | 2,07 | |
dc.description.jcr | 8,665 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
dc.description.miaricds | 11,0 | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Física | - |
crisitem.author.orcid | 0000-0003-3878-3867 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Díaz Cabrera, Moisés | - |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.