Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/111150
Título: | The 8T-LE Partition Applied to the Barycentric Division of a 3-D Cube | Autores/as: | Padrón Medina, Miguel Ángel Plaza De La Hoz, Ángel |
Clasificación UNESCO: | 1204 Geometría | Fecha de publicación: | 2021 | Editor/a: | Springer | Publicación seriada: | Lecture Notes in Computational Science and Engineering | Conferencia: | European Conference on Numerical Mathematics and Advanced Applications, (ENUMATH 2019) | Resumen: | The barycentric partition of a 3D-cube into tetrahedra is carried out by adding a new node to the body at the centroid point and then, new nodes are progressively added to the centroids of faces and edges. This procedure generates three types of tetrahedra in every single step called, Sommerville tetrahedron number 3 (ST3), isosceles trirectangular tetrahedron and regular right-type tetrahedron. We are interested in studying the number of similarity classes generated when the 8T-LE partition is applied to these tetrahedra. | URI: | http://hdl.handle.net/10553/111150 | ISBN: | 978-3-030-55873-4 | ISSN: | 1439-7358 | DOI: | 10.1007/978-3-030-55874-1_74 | Fuente: | Numerical Mathematics and Advanced Applications (ENUMATH 2019) / Vermolen F. J., Vuik C. (eds) . Lecture Notes in Computational Science and Engineering [ISSN 1439-7358], v. 139, p. 753-762, (Enero 2021) |
Colección: | Capítulo de libro |
Visitas
158
actualizado el 26-oct-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.