Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/111150
Title: The 8T-LE Partition Applied to the Barycentric Division of a 3-D Cube
Authors: Padrón Medina, Miguel Ángel 
Plaza De La Hoz, Ángel 
UNESCO Clasification: 1204 Geometría
Issue Date: 2021
Publisher: Springer 
Journal: Lecture Notes in Computational Science and Engineering 
Conference: European Conference on Numerical Mathematics and Advanced Applications, (ENUMATH 2019) 
Abstract: The barycentric partition of a 3D-cube into tetrahedra is carried out by adding a new node to the body at the centroid point and then, new nodes are progressively added to the centroids of faces and edges. This procedure generates three types of tetrahedra in every single step called, Sommerville tetrahedron number 3 (ST3), isosceles trirectangular tetrahedron and regular right-type tetrahedron. We are interested in studying the number of similarity classes generated when the 8T-LE partition is applied to these tetrahedra.
URI: http://hdl.handle.net/10553/111150
ISBN: 978-3-030-55873-4
ISSN: 1439-7358
DOI: 10.1007/978-3-030-55874-1_74
Source: Numerical Mathematics and Advanced Applications (ENUMATH 2019) / Vermolen F. J., Vuik C. (eds) . Lecture Notes in Computational Science and Engineering [ISSN 1439-7358], v. 139, p. 753-762, (Enero 2021)
Appears in Collections:Capítulo de libro
Show full item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.