Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/110683
Title: | Opuntia spp. Fibre characterisation to obtain sustainable materials in the composites field | Authors: | Castellano Vera, Jesica Marrero, María D. Ortega Medina, Zaida Cristina Romero, Francisco Benítez Vega, Antonio Nizardo Rodríguez Ventura, Myriam |
UNESCO Clasification: | 320609 Valor nutritivo 310406 Nutrición |
Keywords: | Opuntia Vegetal fibre Fibre treatment Chemical composition FTIR |
Issue Date: | 2021 | Project: | Potencial aprovechamiento de biomasa generada a partir de especies vegetales invasoras de la Macaronesia para uso industrial | Journal: | Polymers | Abstract: | Some studies have evaluated the use of Opuntia as reinforcement for polymeric matrices, obtaining good results in energy absorption tests and increasing the tensile elastic modulus. However, no studies focusing on the previous characterisation of the fibres and their treatment to improve compatibility with polymeric matrices have been found. This work analyses the chemical composition of Opuntia maxima (OM) and Opuntia dillenii (OD) cladodes and fibre, studying how different treatments influence it. AOAC 2000 methods were used to determine non-structural components and the Van Soest method was used to estimate structural components. Surface characteristics of the samples were also evaluated by Fourier Transform Infrared Spectroscopy (FTIR). Opuntia fibre presented higher cellulose (50–66%) and lignin (6–14%) content and lower hemicellulose (8–13%) content than Opuntia cladodes (9–14% cellulose, 20–50% hemicellulose, 1–4% lignin). Despite the variability of lignocellulosic materials, OD cladodes treated with water and acetic acid achieved an increase in the structural components. Alkaline fibre treatment removed pectin and hemicellulose from the fibre surface, slightly increasing the cellulose content. Future research should evaluate whether the treated Opuntia fibre can improve the mechanical properties of reinforced polymer. | URI: | http://hdl.handle.net/10553/110683 | ISSN: | 2073-4360 | DOI: | 10.3390/polym13132085 | Source: | Polymers [ISSN 2073-4360], v. 13 (13), 2085, (Junio 2021) |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
13
checked on Nov 24, 2024
WEB OF SCIENCETM
Citations
13
checked on Nov 24, 2024
Page view(s)
158
checked on May 4, 2024
Download(s)
133
checked on May 4, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.