Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/107511
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Vargas, J. Francisco | en_US |
dc.contributor.author | Ferrer Ballester, Miguel Ángel | en_US |
dc.date.accessioned | 2021-06-14T08:49:58Z | - |
dc.date.available | 2021-06-14T08:49:58Z | - |
dc.date.issued | 2009 | en_US |
dc.identifier.isbn | 978-1-59904-849-9 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/107511 | - |
dc.description.abstract | Biometric offers potential for automatic personal identification and verification, differently from other means for personal verification; biometric means are not based on the possession of anything (as cards) or the knowledge of some information (as passwords). There is considerable interest in biometric authentication based on automatic signature verification (ASV) systems because ASV has demonstrated to be superior to many other biometric authentication techniques e.g. finger prints or retinal patterns, which are reliable but much more intrusive and expensive. An ASV system is a system capable of efficiently addressing the task of make a decision whether a signature is genuine or forger. Numerous pattern recognition methods have been applied to signature verification. Among the methods that have been proposed for pattern recognition on ASV, two broad categories can be identified: memory-based and parameter-based methods as a neural network. The Major approaches to ASV systems are the template matching approach, spectrum approach, spectrum analysis approach, neural networks approach, cognitive approach and fractal approach. The proposed article reviews ASV techniques corresponding with approaches that have so far been proposed in the literature. An attempt is made to describe important techniques especially those involving ANNs and assess their performance based on published literature. The paper also discusses possible future areas for research using ASV. | en_US |
dc.language | eng | en_US |
dc.publisher | IGI Global | en_US |
dc.source | Encyclopedia of Artificial Intelligence / Juan Ramón Rabuñal Dopico, Julian Dorado and Alejandro Pazos (Eds.), cap. 180, p. 1232-1237 | en_US |
dc.subject | 3307 Tecnología electrónica | en_US |
dc.title | Neural Networks on Handwritten Signature Verification | en_US |
dc.type | info:eu-repo/semantics/bookPart | en_US |
dc.type | BookPart | en_US |
dc.description.lastpage | 1237 | en_US |
dc.description.firstpage | 1232 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Capítulo de libro | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.description.spiq | Q1 | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-2924-1225 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Ferrer Ballester, Miguel Ángel | - |
Appears in Collections: | Capítulo de libro |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.