Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/107511
DC FieldValueLanguage
dc.contributor.authorVargas, J. Franciscoen_US
dc.contributor.authorFerrer Ballester, Miguel Ángelen_US
dc.date.accessioned2021-06-14T08:49:58Z-
dc.date.available2021-06-14T08:49:58Z-
dc.date.issued2009en_US
dc.identifier.isbn978-1-59904-849-9en_US
dc.identifier.urihttp://hdl.handle.net/10553/107511-
dc.description.abstractBiometric offers potential for automatic personal identification and verification, differently from other means for personal verification; biometric means are not based on the possession of anything (as cards) or the knowledge of some information (as passwords). There is considerable interest in biometric authentication based on automatic signature verification (ASV) systems because ASV has demonstrated to be superior to many other biometric authentication techniques e.g. finger prints or retinal patterns, which are reliable but much more intrusive and expensive. An ASV system is a system capable of efficiently addressing the task of make a decision whether a signature is genuine or forger. Numerous pattern recognition methods have been applied to signature verification. Among the methods that have been proposed for pattern recognition on ASV, two broad categories can be identified: memory-based and parameter-based methods as a neural network. The Major approaches to ASV systems are the template matching approach, spectrum approach, spectrum analysis approach, neural networks approach, cognitive approach and fractal approach. The proposed article reviews ASV techniques corresponding with approaches that have so far been proposed in the literature. An attempt is made to describe important techniques especially those involving ANNs and assess their performance based on published literature. The paper also discusses possible future areas for research using ASV.en_US
dc.languageengen_US
dc.publisherIGI Globalen_US
dc.sourceEncyclopedia of Artificial Intelligence / Juan Ramón Rabuñal Dopico, Julian Dorado and Alejandro Pazos (Eds.), cap. 180, p. 1232-1237en_US
dc.subject3307 Tecnología electrónicaen_US
dc.titleNeural Networks on Handwritten Signature Verificationen_US
dc.typeinfo:eu-repo/semantics/bookParten_US
dc.typeBookParten_US
dc.description.lastpage1237en_US
dc.description.firstpage1232en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Capítulo de libroen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.contributor.buulpgcBU-TELen_US
dc.contributor.buulpgcBU-TELen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.spiqQ1
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
Appears in Collections:Capítulo de libro
Show simple item record

Page view(s)

58
checked on Dec 7, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.