Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/107487
DC FieldValueLanguage
dc.contributor.authorDas, Abhijiten_US
dc.contributor.authorFerrer, Miguel A.en_US
dc.contributor.authorMorales Moreno, Aythamien_US
dc.contributor.authorDíaz Cabrera, Moisésen_US
dc.contributor.authorPal, Umapadaen_US
dc.contributor.authorImpedovo, Donatoen_US
dc.contributor.authorHongliang Lien_US
dc.contributor.authorWentao Yangen_US
dc.contributor.authorKensho Otaen_US
dc.contributor.authorTadahito Yaoen_US
dc.contributor.authorLe Quang Hungen_US
dc.contributor.authorNguyen Quoc Cuongen_US
dc.contributor.authorSeungjae Kimen_US
dc.contributor.authorGattal, Abdeljalilen_US
dc.date.accessioned2021-06-11T11:31:38Z-
dc.date.available2021-06-11T11:31:38Z-
dc.date.issued2021en_US
dc.identifier.urihttp://hdl.handle.net/10553/107487-
dc.description.abstractThe paper presents a summary of the 1st Competition on Script Identification in the Wild (SIW 2021) organised in conjunction with 16th International Conference on Document Analysis and Recognition (ICDAR 2021). The goal of SIW is to evaluate the limits of script identification approaches through a large scale in the wild database including 13 scripts (MDIW-13 dataset) and two different scenarios (handwritten and printed). The competition includes the evaluation over three different tasks depending of the nature of the data used for training and testing. Nineteen research groups registered for SIW 2021, out of which 6 teams from both academia and industry took part in the final round and submitted a total of 166 algorithms for scoring. Submissions included a wide variety of deep-learning solutions as well as approaches based on standard image processing techniques. The performance achieved by the participants prove the elevate accuracy of deep learning methods in comparison with traditional statistical approaches. The best approach obtained classification accuracies of 99% in all three tasks with experiments over more than 50K test samples. The results suggest that there is still room for improvements, specially over handwritten samples and specific scripts.en_US
dc.languageengen_US
dc.publisherSpringeren_US
dc.sourceDocument Analysis and Recognition – ICDAR 2021 / Josep Lladós, Prof. Daniel Lopresti, Seiichi Uchida (eds.), v. IVen_US
dc.subject2405 Biometríaen_US
dc.subject570102 Documentación automatizadaen_US
dc.subject.otherHandwritten and printed script identificationen_US
dc.subject.otherWilden_US
dc.subject.otherDeep learningen_US
dc.subject.otherMulti-scripten_US
dc.titleSIW 2021: ICDAR Competition on Script Identification in the Wilden_US
dc.typeinfo:eu-repo/semantics/conferenceobjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference16th International Conference on Document Analysis and Recognition (ICDAR 2021)en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.description.numberofpages17en_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-BASen_US
dc.description.ggs2
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.event.eventsstartdate05-09-2021-
crisitem.event.eventsenddate10-09-2021-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Física-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.orcid0000-0003-3878-3867-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
crisitem.author.fullNameMorales Moreno,Aythami-
crisitem.author.fullNameDíaz Cabrera, Moisés-
Appears in Collections:Actas de congresos
Thumbnail
Adobe PDF (396,91 kB)
Show simple item record

Page view(s)

285
checked on Sep 23, 2024

Download(s)

334
checked on Sep 23, 2024

Google ScholarTM

Check


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.