Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/107485
DC FieldValueLanguage
dc.contributor.authorParziale, Antonioen_US
dc.contributor.authorDiaz, Moisesen_US
dc.contributor.authorFerrer, Miguel A.en_US
dc.contributor.authorMarcelli, Angeloen_US
dc.date.accessioned2021-06-11T10:17:27Z-
dc.date.available2021-06-11T10:17:27Z-
dc.date.issued2017en_US
dc.identifier.isbn9788864387062en_US
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/107485-
dc.description.abstractHandwritten signature is a biometric trait used for verifying a person’s identity. Automatic signature verification systems typically require a lot of specimens in order to model the signing habit of a subject but, in a real scenario, few signature samples are available. To overcome this problem, methods for creating human-like duplicated signatures using one real signature per subject and based on sigma lognormal decomposition have been proposed in literature. In this paper, we evaluate if duplicated signatures show the same amount of variability observed in real signaturesby detectingand analysingsignature stability regions. In particular, we investigateif real and duplicated signatures could be the instances of a similarmotor program. Experimental results on a standard dataset show thatin some casesduplication methods introduce a variability that is greater thanthe writer's variability to such an extent to generate motor programs that do not belong to the writer's repertoire. Results suggest that a connectionexists between trajectory plan and motor plan parameters, whichcannot be modified independently one from the other in order to generate synthetic signatures that reflect the writer’smotor program repertoire.en_US
dc.languageengen_US
dc.publisherInternational Graphonomics Societyen_US
dc.sourceGraphonomics for e-Citizens: e-Health, e-Society, e-Education / Claudio De Stefano, Angelo Marcelli (Eds.), p.119-122en_US
dc.subject2405 Biometríaen_US
dc.titleDo synthetic generated signatures reflect the subject motor programs? A pilot studyen_US
dc.typeinfo:eu-repo/semantics/conferenceobjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference18th Conference of the International-Graphonomics-Society (IGS 2017)en_US
dc.description.lastpage122en_US
dc.description.firstpage119en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.description.numberofpages4en_US
dc.utils.revisionen_US
dc.date.coverdate2017en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-BASen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Física-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0003-3878-3867-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameDíaz Cabrera, Moisés-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
crisitem.event.eventsstartdate18-06-2017-
crisitem.event.eventsenddate21-06-2017-
Appears in Collections:Actas de congresos
Thumbnail
Adobe PDF (676,32 kB)
Show simple item record

Page view(s)

201
checked on Sep 28, 2024

Download(s)

25
checked on Sep 28, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.