Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/107285
Title: Testing the contribution of multi‐source remote sensing features for random forest classification of the greater amanzule tropical peatland
Authors: Amoakoh, Alex O.
Aplin, Paul
Awuah, Kwame T.
Delgado‐Fernandez, Irene
Moses, Cherith
Peña Alonso, Carolina Priscila 
Kankam, Stephen
Mensah, Justice C.
UNESCO Clasification: 250501-1 Biogeografía botánica
5102 Etnografía y etnología
Keywords: Classification
Feature Selection
Google Earth Engine
Random Forest
Sentinel, et al
Issue Date: 2021
Journal: Sensors (Switzerland) 
Abstract: Tropical peatlands such as Ghana’s Greater Amanzule peatland are highly valuable eco-systems and under great pressure from anthropogenic land use activities. Accurate measurement of their occurrence and extent is required to facilitate sustainable management. A key challenge, however, is the high cloud cover in the tropics that limits optical remote sensing data acquisition. In this work we combine optical imagery with radar and elevation data to optimise land cover classification for the Greater Amanzule tropical peatland. Sentinel‐2, Sentinel‐1 and Shuttle Radar Topography Mission (SRTM) imagery were acquired and integrated to drive a machine learning land cover classification using a random forest classifier. Recursive feature elimination was used to op-timize high‐dimensional and correlated feature space and determine the optimal features for the classification. Six datasets were compared, comprising different combinations of optical, radar and elevation features. Results showed that the best overall accuracy (OA) was found for the integrated Sentinel‐2, Sentinel‐1 and SRTM dataset (S2+S1+DEM), significantly outperforming all the other classifications with an OA of 94%. Assessment of the sensitivity of land cover classes to image features indicated that elevation and the original Sentinel‐1 bands contributed the most to separating tropical peatlands from other land cover types. The integration of more features and the removal of redundant features systematically increased classification accuracy. We estimate Ghana’s Greater Amanzule peatland covers 60,187 ha. Our proposed methodological framework contributes a robust workflow for accurate and detailed landscape‐scale monitoring of tropical peatlands, while our findings provide timely information critical for the sustainable management of the Greater Amanzule peatland.
URI: http://hdl.handle.net/10553/107285
ISSN: 1424-8220
DOI: 10.3390/s21103399
Source: Sensors [ISSN 1424-8220], v. 21 (10), 3399, (Mayo 2021)
Appears in Collections:Artículos
Thumbnail
Adobe PDF (7,05 MB)
Show full item record

SCOPUSTM   
Citations

22
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

17
checked on Nov 17, 2024

Page view(s)

101
checked on May 11, 2024

Download(s)

72
checked on May 11, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.