Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/107085
Título: An evolutionary game model for understanding fraud in consumption taxes [Research Frontier]
Autores/as: Chica, Manuel
Hernández Guerra, Juan María 
Manrique De Lara Peñate, Casiano 
Chiong, Raymond
Clasificación UNESCO: 530202 Modelos econométricos
530101 Política fiscal y deuda pública
Palabras clave: Tax compilance
Value added tax
Game models
Subjective probability
Fecha de publicación: 2021
Publicación seriada: IEEE Computational Intelligence Magazine 
Resumen: This paper presents a computational evolutionary game model to study and understand fraud dynamics in the consumption tax system. Players are cooperators if they correctly declare their value added tax (VAT), and are defectors otherwise. Each player's payoff is influenced by the amount evaded and the subjective probability of being inspected by tax authorities. Since transactions between companies must be declared by both the buyer and seller, a strategy adopted by one influences the other?s payoff. We study the model with a wellmixed population and different scalefree networks. Model parameters were calibrated using real-world data of VAT declarations by businesses registered in the Canary Islands region of Spain. We analyzed several scenarios of audit probabilities for high and low transactions and their prevalence in the population, as well as social rewards and penalties to find the most efficient policy to increase the proportion of cooperators. Two major insights were found. First, increasing the subjective audit probability for low transactions is more efficient than increasing this probability for high transactions. Second, favoring social rewards for cooperators or alternative penalties for defectors can be effective policies, but their success depends on the distribution of the audit probability for low and high transactions.
URI: http://hdl.handle.net/10553/107085
ISSN: 1556-603X
DOI: 10.1109/MCI.2021.3061878
Fuente: IEEE Computational Intelligence Magazine [ISSN 1556-603X], v. 16 (2), p. 62-76, (Mayo 2021)
Colección:Artículos
miniatura
Adobe PDF (2,06 MB)
Vista completa

Citas SCOPUSTM   

14
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

13
actualizado el 15-dic-2024

Visitas

169
actualizado el 30-nov-2024

Descargas

272
actualizado el 30-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.