Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/106772
Campo DC Valoridioma
dc.contributor.authorCruz-Guerrero, Ines A.en_US
dc.contributor.authorLeón Martín, Sonia Raquelen_US
dc.contributor.authorCampos-Delgado, Daniel U.en_US
dc.contributor.authorOrtega Sarmiento, Samuelen_US
dc.contributor.authorFabelo Gómez, Himar Antonioen_US
dc.contributor.authorMarrero Callicó, Gustavo Ivánen_US
dc.date.accessioned2021-04-14T07:45:57Z-
dc.date.available2021-04-14T07:45:57Z-
dc.date.issued2020en_US
dc.identifier.issn2076-3417en_US
dc.identifier.urihttp://hdl.handle.net/10553/106772-
dc.description.abstractHyperspectral imaging is a multidimensional optical technique with the potential of providing fast and accurate tissue classification. The main challenge is the adequate processing of the multidimensional information usually linked to long processing times and significant computational costs, which require expensive hardware. In this study, we address the problem of tissue classification for intraoperative hyperspectral images of in vivo brain tissue. For this goal, two methodologies are introduced that rely on a blind linear unmixing (BLU) scheme for practical tissue classification. Both methodologies identify the characteristic end-members related to the studied tissue classes by BLU from a training dataset and classify the pixels by a minimum distance approach. The proposed methodologies are compared with a machine learning method based on a supervised support vector machine (SVM) classifier. The methodologies based on BLU achieve speedup factors of ~459 and ~429 compared to the SVM scheme, while keeping constant and even slightly improving the classification performanceen_US
dc.languageengen_US
dc.relation.ispartofApplied Sciencesen_US
dc.sourceApplied Sciences [ISSN 2076-3417], n. 10 (16), 5686, (2020)en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherHyperspectral imagingen_US
dc.subject.otherIntraoperative imagingen_US
dc.subject.otherBrain canceren_US
dc.subject.otherLinear unmixingen_US
dc.subject.otherSupport vector machineen_US
dc.titleClassification of Hyperspectral In Vivo Brain Tissue Based on Linear Unmixingen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typearticleen_US
dc.identifier.doi10.3390/app10165686en_US
dc.identifier.scopus2-s2.0-85089795160-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.identifier.issue16-
dc.investigacionCiencias de la Saluden_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
local.message.claim2022-11-21T12:28:54.002+0000|||rp02870|||submit_approve|||dc_contributor_author|||None-
dc.identifier.external78931087-
dc.description.numberofpages20en_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,293-
dc.description.sjrqQ2-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-4287-3200-
crisitem.author.orcid0000-0002-7519-954X-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameLeón Martín,Sonia Raquel-
crisitem.author.fullNameOrtega Sarmiento,Samuel-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
Colección:Artículos
miniatura
Adobe PDF (3,1 MB)
Vista resumida

Citas SCOPUSTM   

19
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

14
actualizado el 17-nov-2024

Visitas

148
actualizado el 24-ago-2024

Descargas

113
actualizado el 24-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.