Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/106206
Campo DC Valoridioma
dc.contributor.authorCristóbal, Teresaen_US
dc.contributor.authorPadrón, Gabinoen_US
dc.contributor.authorQuesada-Arencibia, Alexisen_US
dc.contributor.authorAlayón, Franciscoen_US
dc.contributor.authorGarcía, Carmelo R.en_US
dc.date.accessioned2021-03-24T13:25:12Z-
dc.date.available2021-03-24T13:25:12Z-
dc.date.issued2019en_US
dc.identifier.issn2504-3900en_US
dc.identifier.urihttp://hdl.handle.net/10553/106206-
dc.description.abstractThe current paradigm of intelligent transport systems (ITS) is based on the continuous observation of what is happening in the transport network and the continuous processing of data coming from these observations. This implies the handling and processing of a massive amount of data, and for this reason, data mining and big data are fields increasingly used in transportation engineering. A framework to facilitate the phases of data preparation and knowledge modeling in the context of data mining projects for road-based mass transit systems is presented in this paper. To illustrate the utility of the framework, its utilization in the analysis of travel time in a road-based mass transit system is presented as a use case.en_US
dc.languageengen_US
dc.relation.ispartofProceedings (MDPI)en_US
dc.sourceProceedings (MDPI) [ISSN 2504-3900], v. 31 (1), 25 (2019)en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject3327 Tecnología de los sistemas de transporteen_US
dc.subject.otherIntelligent transport systemsen_US
dc.subject.otherData miningen_US
dc.subject.otherMass transit systemsen_US
dc.titleData framework for road-based mass transit systems data mining projecten_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typearticleen_US
dc.relation.conference13th International Conference on Ubiquitous Computing and Ambient ‪Intelligence - UCAmI 2019-
dc.identifier.doi10.3390/proceedings2019031025en_US
dc.identifier.issue1-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.notasThis article belongs to the Proceedings of 13th International Conference on Ubiquitous Computing and Ambient ‪Intelligence UCAmI 2019‬en_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.event.eventsstartdate02-12-2019-
crisitem.event.eventsenddate05-12-2019-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-5573-1156-
crisitem.author.orcid0000-0002-8313-5124-
crisitem.author.orcid0000-0002-7285-9194-
crisitem.author.orcid0000-0003-1433-3730-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNamePadrón Morales, Gabino-
crisitem.author.fullNameQuesada Arencibia, Francisco Alexis-
crisitem.author.fullNameAlayón Hernández,Francisco Javier-
crisitem.author.fullNameGarcía Rodríguez, Carmelo Rubén-
Colección:Artículos
miniatura
Adobe PDF (538 kB)
Vista resumida

Visitas

152
actualizado el 19-oct-2024

Descargas

93
actualizado el 19-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.