Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/106072
Campo DC Valoridioma
dc.contributor.authorFerrer Ballester, Miguel Ángelen_US
dc.contributor.authorDiaz Cabrera, Moisesen_US
dc.contributor.authorCarmona Duarte, María Cristinaen_US
dc.contributor.authorRejean Plamondonen_US
dc.date.accessioned2021-03-22T14:48:23Z-
dc.date.available2021-03-22T14:48:23Z-
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/10553/106072-
dc.description.abstractOne of the biggest challenges in on-line signature verification is the detection of counterfeited signatures. Recently, novel schemes based on the kinematic theory of rapid human movements and its associated Sigma-Lognormal model has been proposed to improve the detection of on-line skilled forgeries. But for a more realistic and reliable estimation of the forgery detection rate, we would need more challenging on-line forgeries than those included in current databases. To get better on-line skilled forgeries, this paper aimed at leveraging the Sigma-Lognormal model to improve the skill of any online forged signature. Specifically, we propose to replace the original velocity profile of any on-line signature by a synthetic Sigma-Lognormal profile. The new profile emulates a genuine-like velocity profiles without modifying the original ballistic trajectory. Experimental results were performed with the 132 on-line users of publicly BiosecureID database. It is shown that the detection rate of forgeries is significantly worsened when the velocity profile is replaced by the synthetic one. A countermeasure to detect this kind of improved fake signatures is also proposed.en_US
dc.languageengen_US
dc.sourceICPRAI 2018. International Conference on Pattern Recognition and Artificial Intelligence. Montreal, Canadáen_US
dc.subject1203 Ciencia de los ordenadoresen_US
dc.subject.otherAutomatic Signature Verificationen_US
dc.subject.otherSigma-Lognormal modelen_US
dc.subject.otherforged signaturesen_US
dc.titleImproving on-line signature skillfulnessen_US
dc.typeinfo:eu-repo/semantics/conferenceobjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceInternational Conference on Pattern Recognition and Artificial Intelligenceen_US
dc.description.lastpage799en_US
dc.description.firstpage795en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Física-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-2924-1225-
crisitem.author.orcid0000-0003-3878-3867-
crisitem.author.orcid0000-0002-4441-6652-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameFerrer Ballester, Miguel Ángel-
crisitem.author.fullNameDíaz Cabrera, Moisés-
crisitem.author.fullNameCarmona Duarte, María Cristina-
Colección:Actas de congresos
miniatura
Adobe PDF (621,33 kB)
Vista resumida

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.