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Abstract—One of the biggest challenges in on-line signature 
verification is the detection of counterfeited signatures. Recently, 
novel schemes based on the kinematic theory of rapid human 
movements and its associated Sigma-Lognormal model has been 
proposed to improve the detection of on-line skilled forgeries. But 
for a more realistic and reliable estimation of the forgery detection 
rate, we would need more challenging on-line forgeries than those 
included in current databases. To get better on-line skilled 
forgeries, this paper aimed at leveraging the Sigma-Lognormal 
model to improve the skill of any online forged signature. 
Specifically, we propose to replace the original velocity profile of 
any on-line signature by a synthetic Sigma-Lognormal profile. The 
new profile emulates a genuine-like velocity profiles without 
modifying the original ballistic trajectory. Experimental results 
were performed with the 132 on-line users of publicly BiosecureID 
database. It is shown that the detection rate of forgeries is 
significantly worsened when the velocity profile is replaced by the 
synthetic one. A countermeasure to detect this kind of improved 
fake signatures is also proposed. 

Keywords—Automatic Signature Verification, Sigma-
Lognormal model, forged signatures.  

I. INTRODUCTION 
Biometrics have emerged as a reliable, fast and automatic 
identification technology. Among the different biometric traits 
(i.e., fingerprint, face, voice, iris, etc.), one of the most widely 
accepted is the signature. Even though the verification 
performance rates of Automatic Signature Verifiers (ASV) 
have reached significant ratios, skilled forgeries still remains a 
major challenge for those systems. 

According to forensic handwriting examiner nomenclature, 
the spectrum of signature forgeries spans from random to 
simple or zero effort up to skilled or freehand specimens. 
Although efforts have been put in recent years to incorporate 
better forgeries in test database, most of these cannot be 
considered as fully skilled forgeries, at least in a forensic 
document perspective, where it refers to the action of a forger 
who tries to imitate, after time and practice, as closely as 
possible the static and dynamic information hidden in a 
specimen. 

Recently, several papers have considered the use of the 
kinematic theory of rapid human movements and its associated 
Sigma-Lognormal model [4] to improve the forgery detection. 

Briefly, this theory models the velocity profile of a rapid 
movement, like a signature, as a weighted sum of delayed 
lognormals. Each of these lognormals represent a stroke, the 
complete movement being a composition of overlapped 
strokes. One of the advantage of this model is that it considers 
physical body features such as the neuromuscular system 
response for the production of a signature difficult to imitate.  

In the literature we can find some articles which use the 
kinematic theory of rapid human movements to detect skilled 
forgery. For example, the lognormal parameters are combined 
with classical parameters to improve an ASV in [5]. In the same 
context, in [6] a dissimilarity measure between lognormal 
features are proposed. These parameters have been also used to 
train ASV with only one signature [7]. 

However, it could be said that the results reported in such 
papers are biased as most of the skilled forgeries available in 
the current databases usually reproduce the trajectory of a 
genuine signature accurately but the dynamic of the signature 
is poorly imitated [2]. It arguably explains the poor 
performance of off-line ASV against skilled forgeries and the 
better accuracy of on-line ASV as they analyze not only the 
trajectory on the paper (pen-down), but also consider the 
trajectory in the air (pen-up) and its dynamic properties. 

Obviously, impersonating pen-ups and dynamic properties is 
really challenging for a forger. On the one hand, a genuine 
signer signs quickly and swiftly which corresponds to a well-
learnt movement. On the other hand, the forgeries sign carefully 
producing a larger and slower velocity profile than the genuine 
counterpart. This fact is easily detectable by on-line ASV such 
as those based on Dynamic Time Warping (DTW) [3].   

To get a more realistic estimate of an ASV performance, it 
would be required to build a new database with more realistic 
on-line skilled forgeries. But this is an almost unrealistic goal 
to reach from a time, monetary and legal perspective. 

In this paper we address this problem by providing, on the 
one hand, a methodology to generate better synthetic skilled 
forgeries at the testing phase of an ASV design and, on the other 
hand, a countermeasure technique to avoid this methodology to 
be used against such an ASV system in real life application.  

For this purposes, to improve the skillfulness of any on-line 



forged signatures, we propose the following algorithm, outlined 
in Figure 1, which is mainly based on replacing the real velocity 
profile by a synthetic one as follows: 1) The sampling points of 
an on-line signature are interpolated and the perceptual 
important points of the 8-connected trajectory are estimated. 2) 
A time is given to each stroke between perceptual important 
points. 3) A lognormal is assigned to each stroke between 
perceptual important points. Each lognormal is overlapped with 
the adjacent lognormals. 4) The 8-connected trajectory is 
resampled with the new velocity profile. 

In this way, it is expected that the performance of skilled 
forgeries in a database fully resampled will be worse than the 
original one. At the same time, it is also expected that the 
performance in random forgeries will be similar to the original. 
In other words, the resampling will move the probability 
density function (pdf) of skilled forgeries scores toward the pdf 
of genuine signature scores. Besides, the pdf of genuine 
signature scores will not change. 

The outline of the paper is as follows: Section 2 describes the 
procedure to estimate the perceptual important points of the 
trajectory. The velocity synthesis based on lognormal and 
resampling is detailed in the third section. The results are given 
in Section 4 while in Section 5 the conclusions are discussed 
which are drawn upon the found results in our study.  

II.  PERCEPTUAL IMPORTANT POINTS ESTIMATION 
Even though many proposals have been issued, the accurate 
estimation of the perceptual important points in handwriting is 
still a challenging problem. According to [8], some approaches 
worked out the curvature at point 𝑝𝑝 as the tangent of the angle 
between the lines < 𝑝𝑝, 𝑝𝑝 + 𝑑𝑑 > and < 𝑝𝑝, 𝑝𝑝 − 𝑑𝑑 >, 𝑑𝑑  being a 
predefined distance. Different values of 𝑑𝑑  were used in 
multiscale estimators. Other approaches estimated the 
curvature as the radius of the osculating circle [9] or spline 
reconstruction [8].  

Focusing on handwriting segmentation, two relevant 
approaches have been found in the literature. The first ones [10] 
proposed a method on the basis that handwriting is composed 
of curvilinear and angular strokes. The second one suggested a 
multiresolution algorithm [11]. 

These methods calculated the curvature of the trajectory in 
order to estimate the perceptual important points by 
thresholding. The thresholding works reasonably well when it 
is applied to handwriting text. But some problems arise with 
Western signatures. This results mainly from the wide variety 
of curvatures because they combine text with flourishes. As a 
consequence, it produces corners of different sharpness in the 
same specimen. 

To address these effects, a Two-Steps Perceptual Important 
Points Estimator (TS-PIPE) for handwriting signatures has 
been proposed in [12]. In the first step, the more salient corners 
are worked out by means of a multiscale estimation of the 
curvature [11]. In the second step, a novel approach is applied 
to work out the missed salient curvature points based on the fact 
that each single stroke can be approximated by a circumference 
arc[4]. Consequently, it could be thought that the trajectory 
between two salient curvature points is fairly circular and will 
change from one circle to the next one around the corners. In 
other words, if the trajectory between two detected corners in 
the first step is circular enough, no more corner will be added 
in the middle. Otherwise, new corner points will be added in 
the middle. For further details, please go through [12]. 

III. VELOCITY PROFILE SYNTHESIS AND RESAMPLING 
This section is devoted to generate genuine-like synthetic 
lognormal velocity profile. For this purposes, we use the 
location of the perceptual important points to set up the minima 
in the velocity profile. The new velocity is obtained from the 
kinematic theory of rapid movements. It claims that the human 
being performs their movements with a velocity profile 𝑣̅𝑣(𝑡𝑡) 
which can be modeled as a linear combination of lognormals 
[4] as follows: 

𝑣̅𝑣(𝑡𝑡) = �𝑣̅𝑣𝑗𝑗(𝑡𝑡;
𝑀𝑀

𝑗𝑗=1

𝐷𝐷𝑗𝑗 , 𝜏𝜏j, 𝜇𝜇j,𝜎𝜎j2) (1) 

being the velocity profile of each stroke 𝑣𝑣𝑗𝑗(𝑡𝑡) defined as: 

𝑣𝑣𝑗𝑗�𝑡𝑡; 𝜏𝜏𝑗𝑗 , 𝜇𝜇j,𝜎𝜎j2� =
𝐷𝐷𝑗𝑗

𝜎𝜎𝑗𝑗√2𝜋𝜋(𝑡𝑡 − 𝜏𝜏𝑗𝑗)
𝑒𝑒𝑒𝑒𝑒𝑒 �−

�𝑙𝑙𝑙𝑙�𝑡𝑡 − 𝜏𝜏𝑗𝑗� − 𝜇𝜇𝑗𝑗�
2

2𝜎𝜎𝑗𝑗2
� (2) 

where 𝑡𝑡 is the time basis, 𝜏𝜏𝑗𝑗 the time of stroke occurrence, 𝐷𝐷𝑗𝑗  
the amplitude of each stroke, 𝜏𝜏𝑗𝑗 the stroke time delay and 𝜎𝜎𝑗𝑗 the 
stroke response time, both on a logarithmic time scale. The 
distance 𝑠𝑠(𝑡𝑡) traveled at time 𝑡𝑡 is obtained as: 

𝑠𝑠(𝑡𝑡) = � 𝑣𝑣𝑗𝑗(𝑡𝑡)𝑑𝑑𝑑𝑑 =
∞

−∞

𝐷𝐷𝑗𝑗
2 �1 + erf �

ln�𝑡𝑡 − 𝜏𝜏𝑗𝑗� −  𝜇𝜇𝑗𝑗
√2𝜎𝜎𝑗𝑗

�� (3) 

 
Figure 1.  Proposed procedure to improve the skill of a forgery with the 

Sigma-Lognormal model.  



which is the lognormal cumulative function. Solving for 𝑡𝑡 this 
equation, we get the time in terms of the distance as: 

𝑡𝑡(𝑠𝑠) = exp �√2𝜎𝜎𝑗𝑗erf−1 �
2𝑠𝑠(𝑡𝑡)
𝐷𝐷𝑗𝑗

− 1� + 𝜇𝜇𝑗𝑗� + 𝜏𝜏𝑗𝑗  (4) 

Consequently, to generate synthetic specimens, two tasks 
have to be performed, the first one to synthesize the velocity 
profile (working out the parameters of Eq. (1)) and the second 
one to sample the signature trajectory with Eq. (4).  

A. Velocity profile synthesis 
In this section, we adapt the procedure proposed in [13] to the 
present problem. Basically, to synthetize the velocity profile, 
the signature is segmented in strokes. Then a velocity profile is 
generated for each stroke which are accumulated to obtain the 
global synthetic velocity profile of the signature. Each stroke is 
located between two consecutive important points obtained by 
the TS-PIPE algorithm [12]. Let be 𝑁𝑁𝑠𝑠 the number of strokes 
and 𝑙𝑙𝑙𝑙𝑗𝑗 ,∀𝑗𝑗 = 1, … ,𝑁𝑁𝑁𝑁 the length of the 𝑗𝑗𝑡𝑡ℎ stroke. 

To each perceptual important point, it is assigned a 
time𝑡𝑡𝑡𝑡𝑗𝑗 ,∀𝑗𝑗 = 0, … ,𝑁𝑁𝑁𝑁, where 𝑡𝑡𝑡𝑡0 = 0 is the beginning of the 
signature. Therefore, the 𝑗𝑗𝑡𝑡ℎ stroke spans from 𝑡𝑡𝑡𝑡𝑗𝑗−1 up to 𝑡𝑡𝑡𝑡𝑗𝑗. 
As has been said in section II, each perceptual important point 
corresponds to a minimum in the synthetic velocity profile. 

The time of each perceptual important point is obtained as 
follows. The time between perceptual important points or 
velocity minima 𝑡𝑡𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑡𝑡𝑗𝑗−1 is fixed to a fairly constant time 
following the hypothetical existence of the so-called Central 
Pattern Generators (CPG). The CPG produces rhythmic 
patterned outputs, without sensory feedback, to activate 
different motor pools [14]. This can be observed in the clearly 
periodic pattern of the handwriting velocity. Therefore, if the 
velocity generation is assimilated to the CPG step cycle, the 
duration of each stroke should be similar. Specifically, in the 
BiosecureID-132 database [16], the time between velocity 
minima has been calculated and modeled by a Normal 
distribution of average 0.1 and variance 0.005. Consequently, 

the time ∆𝑡𝑡𝑡𝑡𝑗𝑗 = 𝑡𝑡𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑡𝑡𝑗𝑗−1 , ∀𝑗𝑗 = 1, … ,𝑁𝑁𝑁𝑁  is worked out 
following such distribution. This time corresponds with the 
assigned duration for each stroke. 

Once defined the time scale of the signature, we generate a 
synthetic velocity profile for each stroke. Let 𝑣𝑣𝑗𝑗(𝑡𝑡)  be the 
velocity profile of the 𝑗𝑗𝑡𝑡ℎ stroke. Then it must be overlapped 
with the previous and next stroke. For this reason, the starting 
time of the stroke is set to 𝜏𝜏𝑗𝑗 = 𝑡𝑡𝑡𝑡𝑗𝑗−1 − ∆𝑡𝑡𝑡𝑡𝑗𝑗 , ∀𝑗𝑗 = 1, … ,𝑁𝑁𝑁𝑁. 

The values of 𝐷𝐷𝑗𝑗 , 𝜇𝜇j and 𝜎𝜎j2 are set from the following two 
hypotheses: firstly, the margins for natural human handwriting 
given in [4] and secondly, it was heuristically observed that 
most of the lognormals were centered, i.e. the lognormal peak 
approaches the center of the stroke. Therefore, our skewness is 
close to zero, but positive and the kurtosis is around three.  

The calculation of these values is suggested as follows. From 
Eq. (3) we deduce: 

𝑙𝑙𝑙𝑙𝑗𝑗 =
𝐷𝐷𝑗𝑗
2 �1 + erf �

ln�𝑡𝑡𝑡𝑡𝑗𝑗 − 𝜏𝜏𝑗𝑗� −  𝜇𝜇𝑗𝑗
√2𝜎𝜎𝑗𝑗

�� (5) 

Note that 𝑡𝑡𝑡𝑡𝑗𝑗 − 𝜏𝜏𝑗𝑗 = 2∆𝑡𝑡𝑡𝑡𝑗𝑗 . As erf(3) = 1, a possible solution 
for Eq. (5) is:  

𝐷𝐷𝑗𝑗 = 𝑙𝑙𝑙𝑙𝑗𝑗 (6) 

𝜇𝜇𝑗𝑗 = ln�2∆𝑡𝑡𝑡𝑡𝑗𝑗� − 3√2𝜎𝜎𝑗𝑗 (7) 

Furthermore, if the lognormals were centered in the middle of 
the stroke with a low positive skew, their maximum or mode, 
defined by 𝑒𝑒𝜇𝜇𝑗𝑗−𝜎𝜎𝑗𝑗

2
, is around 𝑡𝑡𝑡𝑡𝑗𝑗−1 + ∆𝑡𝑡𝑡𝑡𝑗𝑗/2 with a slight left 

skew. Therefore, it holds that: 

𝑡𝑡𝑡𝑡𝑗𝑗−1 + 𝑘𝑘𝑗𝑗 · ∆𝑡𝑡𝑡𝑡𝑗𝑗 − 𝜏𝜏𝑗𝑗 = ∆𝑡𝑡𝑡𝑡 · (1 + 𝑘𝑘𝑗𝑗) = 𝑒𝑒𝜇𝜇𝑗𝑗−𝜎𝜎𝑗𝑗
2
 (8) 

where the value 𝑘𝑘𝑗𝑗, which provide a slight left skew, is worked 
out randomly for each stroke, following a uniform distribution 
in the margin [0.4 0.5] .This procedure is useful only for 
isolated strokes. 

Finally, combining Eq. (7) and Eq. (8) we obtain: 

𝜎𝜎2 + 3√2𝜎𝜎 − ln �1 + 𝑘𝑘𝑗𝑗
2� � = 0 (9) 

Thus, this approach leads to assign to the parameters 𝐷𝐷𝑗𝑗  the 
value of 𝑙𝑙𝑙𝑙𝑗𝑗 (see Eq. (6)), 𝜎𝜎𝑗𝑗 as the positive solution of a simple 
second order equation (see Eq. (9)), and 𝜇𝜇𝑗𝑗 by substituting 𝜎𝜎𝑗𝑗 in 
Eq. (7). 

Once the velocity profile of individual strokes are obtained, the 
velocity profile of the signature is worked out following Eq. (1). 
As a check of the obtained velocity profile of the signature, we 
must be sure that the integral of the signature velocity profile is 
equal to the total length of the signature. 

B. Lognormal sampling of the trajectory 
The time at every pixel in the signature trajectory is calculated 

 
Figure 2. Examples of synthetic velocity profiles for both genuine and 

forged signatures 



as the integral of the velocity from zero up to each multiple of 
1 /𝑓𝑓𝑚𝑚 , 𝑓𝑓𝑚𝑚  being the sample frequency. Figure 2 shows a 
synthetic example of a reconstructed velocity profile for a 
genuine and a forgery specimen, highlighting that the synthetic 
profile in the forged signature contains less lognormals than the 
original one.  

IV. EXPERIMENTS 
The experiments aimed to verify whether the resampled on-line 
profile is genuine-like enough. As such, the genuine signature 
should be similarly detected by an ASV whereas skilled 
forgeries should be more difficult to detect than the original 
ones. Therefore, the experimental methodology is designed as 
follows: 1. the performance of the original database is worked 
out for both random and skilled forgeries by using two on-line 
ASV, 2. the database is completely resampled with the 
proposed method, 3. the performance of the resampled database 
is obtained and compared to the original one. 

The experiments have been run with the BiopsecureID-132 
database  [16] which contains 132 users, 16 genuine and 12 
forgeries per user. 

A. Comparing False Acceptance Rate and False Rejection 
Rate curves 

The experiments in this subsection aimed at assessing whether 
the proposed method makes on-line skilled forgeries more 
skillful. For this purposes, we compare the False Acceptance 
Rate (FAR) and False Rejection Rate (FRR) curves of both 
original and resampled signatures. Such comparison is 
performed for both random and skilled forgeries (RF and SF, 
respectively) experiments. The random forgery experiment use 
as forgeries the genuine signatures of other signers. The so-
called skilled forgery experiment uses as forgeries the 12 ones 

provided by the database. For the evaluation, two state-of-the-
art on-line ASV have been taken into account: a Dynamic Time 
Warping (DTW) [3] and a Manhattan-based distance ASV [17].  

Both ASV have been trained with the first 5 genuine 
signatures of the BiosecureID database [16]. For FRR, we have 
used the remainder 11 genuine signatures of the same signer. In 
the random forgery experiment we have used the remainder 11 
signatures of all the other signers for calculating the FAR. In 
the skilled forgery experiment, we have used the 12 available 
skilled forgeries of each signer to calculate the corresponding 
FAR. These experiments were performed for the original and 
resampled database under the same conditions.  

The results in terms of EER can be seen in Table I and II for 
DTW and Manhattan distance ASV respectively. As expected, 
the EER in the random forgery (RF) experiment, which only 
involves genuine signatures, are similar between original and 
resampled signatures. However, the EER increases 
significantly in the skilled forgery (SF) experiment. 

This experiment was repeated removing the pen-ups from the 
trajectory, that is to say discarding the samples that corresponds 

  
a) Curves for DTW-based ASV 

  
b) Curves for Manhattan distance-based ASV 

Figure 3. FAR and FRR curves for original and resampled databases in the random and skilled forgeries experiments. DET curves have been 
added to complement the illustrations. 

TABLE I. EQUAL ERROR RATES (EER) OBTAINED WITH DTW 
Experiment With penups Without penups 

 RF SF RF SF 
Original 0.71% 5.46% 1.19% 13.53% 

Resampled 0.88% 9.51% 1.41% 16.67% 
RF: Experiment with Random Forgeries. 

SF: Experiment with Skilled Forgeries. 
 

TABLE II. EQUAL ERROR RATES (EER) WITH MANHATTAN DISTANCE 
Experiment With penups Without penups 

 RF SF RF SF 
Original 1.91% 3.72% 2.93% 6.94% 

Resampled 2.32% 8.07% 3.07% 13.17% 
 



to pen lifts and training and testing both ASV under the same 
conditions than above mentioned. As can be seen in Table I and 
II, the results without pen ups keep the same tendency than with 
pen ups.  

These results are reinforced by the FAR and FRR curves 
shown in Figure 3. In the case of skilled forgeries, the FRR 
curves are similar whereas the FAR curves of the resampled 
databases are displaced toward left in all the cases. It means that 
resampled skilled forgeries are nearer to the genuine than the 
original ones. This effect is clearer in the case of the Manhattan 
distance based ASV.  

Figure 3 also shows that the FAR and FRR curves roughly 
stay the same in the random experiment, which suggests that 
the genuine signatures are barely affected by the proposed 
resampling method.  

V. COUNTERMEASURES 
Previous section showed that using Sigma-Lognormal model is 
feasible to improve the skill of a forgery. In this section, we 
analyse if it is possible to detect the synthetic velocity profile 
of the resampled signatures. As an example, Figure 4 shows the 
velocity profile of an original and resampled genuine signature. 

Two ways of detecting the resampling of a signature are 
devised in this paper based on the speed profile: 

Lognormality-wise: Following the Sigma-Lognormal model, 
a handwritten signature can be decomposed as a sum of 
weighted and overlapped lognormals. However, there are many 
factors that modify the free performance of the motor system, 
which leads to deviations in the lognormal speed profile. For 
instance, some joint pain, uncomfortable wear or posture, 
emotional state of the signer, and so on.  As consequence, the 
Sigma-Lognormal model is only able to approach the velocity 
profile of an original handwritten signature up to a reasonable 
Signal-to-Noise ratio (SNR), which is defined as: 

𝑆𝑆𝑆𝑆𝑆𝑆 = 10log�
∫ 𝑣𝑣𝑜𝑜(𝑡𝑡)2𝑇𝑇
𝑡𝑡=0 𝑑𝑑𝑑𝑑

∫ (𝑣𝑣0(𝑡𝑡) − 𝑣𝑣𝑟𝑟(𝑡𝑡))2𝑑𝑑𝑑𝑑𝑇𝑇
𝑡𝑡=0

� 

Where 𝑣𝑣𝑜𝑜(𝑡𝑡) is the original velocity profile and 𝑣𝑣𝑟𝑟(𝑡𝑡) is the 
resampled velocity profile. 

On the contrary, the velocity profile of the resampled 
signature is purely a sum of lognormals. Therefore, it is 
expected that its Sigma-Lognormal decomposition reached 
higher Signal-to Noise ratios. As example of the performance 
of the SNR score as countermeasure, Figure 5 shows the SNR 
distribution of original and resampled signatures for the 
genuine and forgery cases along the on-line real dataset in 
BiosecureID database. 

Regularity-wise: Following the above rationale, the velocity 
profile of resampled signatures is expected to be more regular 
than original ones. This regularity can be measured as the 
variance of the time between minima of the velocity profile. It 
is expected that the regularity is more stable for resampled than 
for original profiles. As example, Figure 6 shows the 
distribution of the regularity for original and resampled 
signatures for the genuine and forgery cases through the on-line 
real dataset in BiosecureID database. 

In both cases, to detect a counterfeited signature, the 
countermeasure algorithm compares the above mentioned SNR 
or regularity score with a threshold. In this case, we use the 
Bayes threshold. If the SNR score of a given signature is greater 
than its threshold or the Regularity score is lower than its 
threshold, then the signature is supposed to be a resampled 
signature and discarded as original.  

To evaluate the performance of both methods, the next 
measures have been worked out for genuine, forgeries and all 
together: precision, recall or sensitivity, specificity and 
accuracy which are defined as: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡 + 𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡 + 𝑓𝑓𝑓𝑓

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡 + 𝑡𝑡𝑡𝑡 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑡𝑡𝑡𝑡 + 𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡 + 𝑡𝑡𝑡𝑡 + 𝑡𝑡𝑡𝑡 + 𝑓𝑓𝑓𝑓

 

Being 𝑡𝑡𝑡𝑡: true positive, 𝑡𝑡𝑡𝑡: true negative, 𝑓𝑓𝑓𝑓: false positive 
and 𝑓𝑓𝑓𝑓 : false negative. The positive hypothesis is that the 
signature has been resampled.  

 

 
Figure 4. Original and resample velocity profile of a genuine signature 
 

 
Figure 5. Probability Density Function for SNR score which distinguish 
between original and resampled signatures for genuine and forgery cases. 
 

 
Figure 6. Probability Density Function for regularity score which 
distinguish between original and resampled signatures for genuine and 
forgery cases. 



The precision is the ratio of signatures classified as 
resampled that are truly resampled. Recall refers to the ratio of 
resampled signatures detected. Specificity appertains to the 
ratio of signatures classified as original that are really original. 
Finally, accuracy is the ratio of signatures rightly classified. 

The results are displayed in Table III for SNR and Table IV 
for Regularity. The measure based on regularity is more 
effective detecting resampled signatures than SNR one as was 
expected as original signatures are also lognormals. Therefore, 
we recommend the countermeasure based on regularity score. 

VI. CONCLUSION 
This paper proposes a procedure based on the Sigma-

Lognormal model to make on-line forgeries more skilful. While 
a well-trained forger can imitate accurately the genuine 
signature trajectory, they usually fail to emulate feasibly the 
velocity profile. Therefore, this paper proposes to improve the 
skill of a forged signature by modifying the speed profile of the 
signature by resampling. It is expected that the new synthetic 
velocity profile will be more genuine-like. 

On the other hand, it could be said that the minima in the 
velocity profile of a genuine signature coincide with the 
perceptual important points in the trajectory. So that, the 
skillfulness of the skilled forgeries is improved by resampling 
the on-line signature producing minima in the estimated 
perceptual important points. The perceptual important points 
are estimated with a two steps algorithm (TS-PIPE) [12]. Then, 
the synthetic velocity profile is build up based on the kinematic 
theory of rapid movements: A set of lognormals are fitted to the 
trajectory regarding the location of the estimated perceptual 
important points. This strategy is applied to original signatures, 
genuine or forgeries, to produce a synthetic (resampled) version 
of the signature with a more genuine-like velocity profile. 

The conducted experiments show that the resampled skilled 
forgeries contain a similar number of speed minima than their 
respective genuine. Additionally, the EER is significantly 
increased for skilled forgeries while it is barely modified in 
random forgeries. These experiments have been conducted in 
two different on-line ASV. The robustness of these 
observations have been confirmed in on-line signatures with 
and without pen-up trajectories.  

Some further work is still required to reduce the differences 
between the False Rejection Curves of the original and 
resampled databases. Additionally, the False Acceptance 
Curves should be more similar in the random forgery 
experiments and move more toward left in the skilled forgery 
experiments. The paper ends by proposing a countermeasure to 
detect this kind of fake signatures in terms of measuring the 
regularity of the speed profile of the given signature. 
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TABLE III. PRECISION, RECALL, SPECIFICITY AND ACCURACY FOR SNR 
 Genuine Forgeries All  

Precision 0.79 0.87 0.83 
Recall 0.80 0.87 0.83 

Specificity 0.50 0.50 0.50 
Accuracy 0.79 0.87 0.83 

 
TABLE IV. PRECISION, RECALL, SPECIFICITY AND ACCURACY FOR REGULARITY 

 Genuine Forgeries All  
Precision 0.89 0.98 0.92 

Recall 0.89 0.97 0.91 
Specificity 0.50 0.50 0.50 
Accuracy 0.89 0.97 0.91 
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