Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/105824
DC FieldValueLanguage
dc.contributor.authorJoshi, Rakesh Chandraen_US
dc.contributor.authorYadav, Saumyaen_US
dc.contributor.authorPathak, Vinay Kumaren_US
dc.contributor.authorMalhotra, Hardeep Singhen_US
dc.contributor.authorKhokhar, Harsh Vardhan Singhen_US
dc.contributor.authorParihar, Aniten_US
dc.contributor.authorKohli, Neeraen_US
dc.contributor.authorHimanshu, D.en_US
dc.contributor.authorGarg, Ravindra K.en_US
dc.contributor.authorBhatt, Madan Lal Brahmaen_US
dc.contributor.authorKumar, Rajen_US
dc.contributor.authorSingh, Naresh Palen_US
dc.contributor.authorSardana, Vijayen_US
dc.contributor.authorBurget, Radimen_US
dc.contributor.authorAlippi, Cesareen_US
dc.contributor.authorTravieso González, Carlos Manuelen_US
dc.contributor.authorDutta, Malay Kishoreen_US
dc.date.accessioned2021-03-16T19:36:41Z-
dc.date.available2021-03-16T19:36:41Z-
dc.date.issued2021en_US
dc.identifier.issn0208-5216en_US
dc.identifier.urihttp://hdl.handle.net/10553/105824-
dc.description.abstractThe lethal novel coronavirus disease 2019 (COVID-19) pandemic is affecting the health of the global population severely, and a huge number of people may have to be screened in the future. There is a need for effective and reliable systems that perform automatic detection and mass screening of COVID-19 as a quick alternative diagnostic option to control its spread. A robust deep learning-based system is proposed to detect the COVID-19 using chest X-ray images. Infected patient's chest X-ray images reveal numerous opacities (denser, confluent, and more profuse) in comparison to healthy lungs images which are used by a deep learning algorithm to generate a model to facilitate an accurate diagnostics for multi-class classification (COVID vs. normal vs. bacterial pneumonia vs. viral pneumonia) and binary classification (COVID-19 vs. non-COVID). COVID-19 positive images have been used for training and model performance assessment from several hospitals of India and also from countries like Australia, Belgium, Canada, China, Egypt, Germany, Iran, Israel, Italy, Korea, Spain, Taiwan, USA, and Vietnam. The data were divided into training, validation and test sets. The average test accuracy of 97.11 ± 2.71% was achieved for multi-class (COVID vs. normal vs. pneumonia) and 99.81% for binary classification (COVID-19 vs. non-COVID). The proposed model performs rapid disease detection in 0.137 s per image in a system equipped with a GPU and can reduce the workload of radiologists by classifying thousands of images on a single click to generate a probabilistic report in real-time.en_US
dc.languageengen_US
dc.relation.ispartofBiocybernetics and Biomedical Engineeringen_US
dc.sourceBiocybernetics and Biomedical Engineering [ISSN 0208-5216], v. 41 (1), p. 239-254en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherChest X-ray radiographsen_US
dc.subject.otherCoronavirusen_US
dc.subject.otherDeep learningen_US
dc.subject.otherImage processingen_US
dc.subject.otherPneumoniaen_US
dc.titleA deep learning-based COVID-19 automatic diagnostic framework using chest X-ray imagesen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.bbe.2021.01.002en_US
dc.description.lastpage254en_US
dc.identifier.issue1-
dc.description.firstpage239en_US
dc.relation.volume41en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.description.sjr1,187
dc.description.jcr5,687
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds11,0
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Appears in Collections:Artículos
Show simple item record

WEB OF SCIENCETM
Citations

36
checked on Nov 17, 2024

Page view(s)

140
checked on May 18, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.