Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/105824
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Joshi, Rakesh Chandra | en_US |
dc.contributor.author | Yadav, Saumya | en_US |
dc.contributor.author | Pathak, Vinay Kumar | en_US |
dc.contributor.author | Malhotra, Hardeep Singh | en_US |
dc.contributor.author | Khokhar, Harsh Vardhan Singh | en_US |
dc.contributor.author | Parihar, Anit | en_US |
dc.contributor.author | Kohli, Neera | en_US |
dc.contributor.author | Himanshu, D. | en_US |
dc.contributor.author | Garg, Ravindra K. | en_US |
dc.contributor.author | Bhatt, Madan Lal Brahma | en_US |
dc.contributor.author | Kumar, Raj | en_US |
dc.contributor.author | Singh, Naresh Pal | en_US |
dc.contributor.author | Sardana, Vijay | en_US |
dc.contributor.author | Burget, Radim | en_US |
dc.contributor.author | Alippi, Cesare | en_US |
dc.contributor.author | Travieso González, Carlos Manuel | en_US |
dc.contributor.author | Dutta, Malay Kishore | en_US |
dc.date.accessioned | 2021-03-16T19:36:41Z | - |
dc.date.available | 2021-03-16T19:36:41Z | - |
dc.date.issued | 2021 | en_US |
dc.identifier.issn | 0208-5216 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/105824 | - |
dc.description.abstract | The lethal novel coronavirus disease 2019 (COVID-19) pandemic is affecting the health of the global population severely, and a huge number of people may have to be screened in the future. There is a need for effective and reliable systems that perform automatic detection and mass screening of COVID-19 as a quick alternative diagnostic option to control its spread. A robust deep learning-based system is proposed to detect the COVID-19 using chest X-ray images. Infected patient's chest X-ray images reveal numerous opacities (denser, confluent, and more profuse) in comparison to healthy lungs images which are used by a deep learning algorithm to generate a model to facilitate an accurate diagnostics for multi-class classification (COVID vs. normal vs. bacterial pneumonia vs. viral pneumonia) and binary classification (COVID-19 vs. non-COVID). COVID-19 positive images have been used for training and model performance assessment from several hospitals of India and also from countries like Australia, Belgium, Canada, China, Egypt, Germany, Iran, Israel, Italy, Korea, Spain, Taiwan, USA, and Vietnam. The data were divided into training, validation and test sets. The average test accuracy of 97.11 ± 2.71% was achieved for multi-class (COVID vs. normal vs. pneumonia) and 99.81% for binary classification (COVID-19 vs. non-COVID). The proposed model performs rapid disease detection in 0.137 s per image in a system equipped with a GPU and can reduce the workload of radiologists by classifying thousands of images on a single click to generate a probabilistic report in real-time. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Biocybernetics and Biomedical Engineering | en_US |
dc.source | Biocybernetics and Biomedical Engineering [ISSN 0208-5216], v. 41 (1), p. 239-254 | en_US |
dc.subject | 3307 Tecnología electrónica | en_US |
dc.subject.other | Chest X-ray radiographs | en_US |
dc.subject.other | Coronavirus | en_US |
dc.subject.other | Deep learning | en_US |
dc.subject.other | Image processing | en_US |
dc.subject.other | Pneumonia | en_US |
dc.title | A deep learning-based COVID-19 automatic diagnostic framework using chest X-ray images | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.bbe.2021.01.002 | en_US |
dc.description.lastpage | 254 | en_US |
dc.identifier.issue | 1 | - |
dc.description.firstpage | 239 | en_US |
dc.relation.volume | 41 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.description.sjr | 1,187 | |
dc.description.jcr | 5,687 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q2 | |
dc.description.scie | SCIE | |
dc.description.miaricds | 11,0 | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-4621-2768 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Travieso González, Carlos Manuel | - |
Appears in Collections: | Artículos |
WEB OF SCIENCETM
Citations
36
checked on Nov 17, 2024
Page view(s)
140
checked on May 18, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.