Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/105801
Título: Improving on-line signature skillfulness
Autores/as: Ferrer Ballester, Miguel Ángel 
Diaz Cabrera, Moises 
Carmona Duarte, María Cristina 
Plamondon, Rejean
Clasificación UNESCO: 3325 Tecnología de las telecomunicaciones
Palabras clave: Automatic Signature Verification
Sigma-Lognormal model
Forged signatures
Fecha de publicación: 2018
Conferencia: 1st International Conference on Pattern Recognition and Artificial Intelligence (ICPRAI 2018)
Resumen: One of the biggest challenges in on-line signature verification is the detection of counterfeited signatures. Recently, novel schemes based on the kinematic theory of rapid human movements and its associated Sigma-Lognormal model has been proposed to improve the detection of on-line skilled forgeries. But for a more realistic and reliable estimation of the forgery detection rate, we would need more challenging on-line forgeries than those included in current databases. To get better on-line skilled forgeries, this paper aimed at leveraging the Sigma-Lognormal model to improve the skill of any online forged signature. Specifically, we propose to replace the original velocity profile of any on-line signature by a synthetic Sigma-Lognormal profile. The new profile emulates a genuine-like velocity profiles without modifying the original ballistic trajectory. Experimental results were performed with the 132 on-line users of publicly BiosecureID database. It is shown that the detection rate of forgeries is significantly worsened when the velocity profile is replaced by the synthetic one. A countermeasure to detect this kind of improved fake signatures is also proposed.
URI: http://hdl.handle.net/10553/105801
ISBN: 1-895193-06-0
Fuente: Proceedings of 1st International Conference on Pattern Recognition and Artificial Intelligence (ICPRAI 2018)
Colección:Actas de congresos
miniatura
Adobe PDF (720,63 kB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.