Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/105800
Título: | An Investigation of Discrete Hidden Markov Models on Handwritten Short Answer Assessment System | Autores/as: | Suwanwiwat, Hemmaphan Dasb, Abbhijit Ferrer Ballester, Miguel Ángel Pal, Umapada Blumenstein, Michael |
Clasificación UNESCO: | 3325 Tecnología de las telecomunicaciones | Palabras clave: | off-line automatic assessment system Hidden Markov Models (HMMs) fixed-point arithmetic geometric features |
Fecha de publicación: | 2018 | Conferencia: | ) | Resumen: | This paper presents an investigation of an off-line automatic assessment system utilising discrete Hidden Markov Models. A set of geometric features were extracted from handwritten words and were later classified by HMMs. There were two training datasets employed in the experiments; the first training dataset contained all correct answers to the questions whereas another training dataset contained both correct and incorrect answers to the questions. Datasets contained 3,000 and 3,400 handwritten samples, respectively. The experiments yielded promising results whereby the highest recognition rate of 91.90% with a 100% accuracy was achieved on our database. | URI: | http://hdl.handle.net/10553/105800 | ISBN: | 1-895193-06-0 | Fuente: | Proceedings of 1st International Conference on Pattern Recognition and Artificial Intelligence (ICPRAI 2018) |
Colección: | Actas de congresos |
Visitas
100
actualizado el 23-mar-2024
Descargas
44
actualizado el 23-mar-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.