Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/77175
Título: Optimising power systems by automating large sets of simulations
Autores/as: Marrero Vera, Samuel 
Reyes Sánchez, Tomás D.
Hernández Cabrera, José Juan 
Évora Gómez, José 
Clasificación UNESCO: 3306 Ingeniería y tecnología eléctricas
120326 Simulación
120317 Informática
Palabras clave: Big data
Model driven engineering
Optimisation
Power systems planning
Simulation, et al.
Fecha de publicación: 2020
Editor/a: Eurosis-ETI (ESIS) 
Conferencia: 34th Annual European Simulation and Modelling Conference, ESM 2020, 21-23 octubre 2020, Toulouse, Francia
Resumen: Power system planners need to perform large sets of simulations to assess the performance of the system in its current or future state. The management of all these simulations and the analysis of their outputs turns into a challenging task. Using these outputs, documents must be generated, including a lot of plots for reporting purposes. This kind of study requires a great amount of effort, making it unaffordable to explore all desired power system scenarios to find the optimal configuration for each one. This happens because simulation tools have considerable limitations when it comes to performing exploratory experiments to find optimal configurations. Using optimisation tools is not the solution either, as these are also limited in their ability to express the complexity of the power system being studied. In this paper, a solution for the automation of power system planning studies is presented. PySelf is a software framework that allows handling several simulator definitions, performing simulations and optimisations and generating code for debugging and document elaboration purposes. This framework has been successfully tested with a real use case that involved the execution of more than 1,000 simulations in the context of a task for the European project OSMOSE (agreement number 773406).
URI: http://hdl.handle.net/10553/77175
ISBN: 978-9492859-12-9
Fuente: Modelling and Simulation 2020 - The European Simulation and Modelling Conference, ESM 2020 / Alexandre Niketsa; Claude Baron; Clément Foucher (eds.), p. 266-271
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

1
actualizado el 15-dic-2024

Visitas

96
actualizado el 23-ene-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.