Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/77094
Título: | Bimodal normal distribution: Extensions and applications | Autores/as: | Gómez Déniz, Emilio Sarabia, J. M. Calderín Ojeda, E. |
Clasificación UNESCO: | 5302 Econometría | Palabras clave: | Bimodal Distribution Folded Normal Distribution Hyperbolic Function Normal Distribution |
Fecha de publicación: | 2021 | Publicación seriada: | Journal of Computational and Applied Mathematics | Resumen: | In this paper, a new family of continuous random variables with non-necessarily symmetric densities is introduced. Its density function can incorporate unimodality and bimodality features. Special attention is paid to the normal distribution which is included as a particular case. Its density function is given in closed-form which allows to easily compute probabilities, moments and other related measures such as skewness and kurtosis coefficients. Also, a stochastic representation of the family that enables us to generate random variates of this model is also presented. This new family of distributions is applied to explain the incidence of Hodgkin's disease by age. Other applications include the implications of bimodality in geoscience. Finally, the multivariate counterpart of this distribution is briefly discussed. | URI: | http://hdl.handle.net/10553/77094 | ISSN: | 0377-0427 | DOI: | 10.1016/j.cam.2020.113292 | Fuente: | Journal of Computational and Applied Mathematics[ISSN 0377-0427],v. 388, (Mayo 2021) |
Colección: | Artículos |
Citas SCOPUSTM
10
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
10
actualizado el 15-dic-2024
Visitas
153
actualizado el 25-feb-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.