Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/76120
Título: A Review of Tensors and Tensor Signal Processing
Autores/as: Cammoun, L.
Castaño Moraga,Carlos Alberto 
Munoz-Moreno, E.
Sosa Cabrera, D.
Acar, B.
Rodriguez-Florido, M. A. 
Brun, A.
Knutsson, H.
Thiran, J. P.
Clasificación UNESCO: 3314 Tecnología médica
Palabras clave: Fiber Tracking
Diffusion
Brain
Elastography
Phase
Fecha de publicación: 2009
Editor/a: Springer 
Publicación seriada: Advances in pattern recognition 
Resumen: Tensors have been broadly used in mathematics and physics, since they are a generalization of scalars or vectors and allow to represent more complex properties. In this chapter we present an overview of some tensor applications, especially those focused on the image processing field. From a mathematical point of view, a lot of work has been developed about tensor calculus, which obviously is more complex than scalar or vectorial calculus. Moreover, tensors can represent the metric of a vector space, which is very useful in the field of differential geometry. In physics, tensors have been used to describe several magnitudes, such as the strain or stress of materials. In solid mechanics, tensors are used to define the generalized Hooke's law, where a fourth order tensor relates the strain and stress tensors. In fluid dynamics, the velocity gradient tensor provides information about the vorticity and the strain of the fluids. Also an electromagnetic tensor is defined, that simplifies the notation of the Maxwell equations. But tensors are not constrained to physics and mathematics. They have been used, for instance, in medical imaging, where we can highlight two applications: the diffusion tensor image, which represents how molecules diffuse inside the tissues and is broadly used for brain imaging; and the tensorial elastography, which computes the strain and vorticity tensor to analyze the tissues properties. Tensors have also been used in computer vision to provide information about the local structure or to define anisotropic image filters.
URI: http://hdl.handle.net/10553/76120
ISBN: 978-1-84882-298-6
ISSN: 1617-7916
DOI: 10.1007/978-1-84882-299-3_1
Fuente: Tensors in Image Processing and Computer Vision. Advances in Pattern Recognition / Aja-Fernández S., de Luis García R., Tao D., Li X. (eds), p. 1-32, (2009)
Colección:Capítulo de libro
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.