Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/73844
Título: Hyperspectral imaging for the detection of glioblastoma tumor cells in H&E slides using convolutional neural networks
Autores/as: Ortega Sarmiento, Samuel 
Halicek, Martin
Fabelo Gómez, Himar Antonio 
Camacho, Rafael
Plaza De La Luz, María
Godtliebsen, Fred
Marrero Callicó, Gustavo Iván 
Fei, Baowei
Clasificación UNESCO: 3314 Tecnología médica
Palabras clave: Hyperspectral imaging
optical pathology
convolutional neural networks
medical optics and biotechnology
Fecha de publicación: 2020
Publicación seriada: Sensors 
Resumen: Hyperspectral imaging (HSI) technology has demonstrated potential to provide useful information about the chemical composition of tissue and its morphological features in a single image modality. Deep learning (DL) techniques have demonstrated the ability of automatic feature extraction from data for a successful classification. In this study, we exploit HSI and DL for the automatic differentiation of glioblastoma (GB) and non-tumor tissue on hematoxylin and eosin (H&E) stained histological slides of human brain tissue. GB detection is a challenging application, showing high heterogeneity in the cellular morphology across different patients. We employed an HIS microscope, with a spectral range from 400 to 1000 nm, to collect 517 HS cubes from 13 GB patients using 20 ✕ magnification. Using a convolutional neural network (CNN), we were able to automatically detect GB within the pathological slides, achieving average sensitivity and specificity values of 88% and 77%, respectively, representing an improvement of 7% and 8% respectively, as compared to the results obtained using RGB (red, green, and blue) images. This study demonstrates that the combination of hyperspectral microscopic imaging and deep learning is a promising tool for future computational pathologies.
URI: http://hdl.handle.net/10553/73844
ISSN: 1424-8220
DOI: 10.3390/s20071911
Fuente: Sensors [ISSN 1424-8220], v. 20 (7), 1911
Colección:Artículos
miniatura
Adobe PDF (7,38 MB)
Vista completa

Citas SCOPUSTM   

71
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

60
actualizado el 17-nov-2024

Visitas

88
actualizado el 28-sep-2024

Descargas

140
actualizado el 28-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.