Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/58284
Título: Deep learning-based framework for In Vivo identification of glioblastoma tumor using hyperspectral images of human brain
Autores/as: Fabelo Gómez, Himar Antonio 
Halicek, Martin
Ortega Sarmiento, Samuel 
Shahedi, Maysam
Zbigniew Szolna,Adam 
Piñeiro, Juan F.
Sosa Pérez, Coralia 
J-O’Shanahan, Aruma
Bisshopp, Sara
Espino, Carlos
Márquez, Mariano
Hernández, María
Carrera, David
Morera Molina, Jesús Manuel 
Marrero Callicó, Gustavo Iván 
Sarmiento Rodríguez, Roberto 
Fei, Baowei
Clasificación UNESCO: 3314 Tecnología médica
Palabras clave: Brain tumor
Cancer surgery
Hyperspectral imaging
Bioinformatics
Intraoperative imaging, et al.
Fecha de publicación: 2019
Proyectos: Identificación Hiperespectral de Tumores Cerebrales (Ithaca) 
Plataforma H2/Sw Distribuida Para El Procesamiento Inteligente de Información Sensorial Heterogenea en Aplicaciones de Supervisión de Grandes Espacios Naturales 
Hyperspectral Imaging Cancer Detection (Helicoid) (Contrato Nº 618080) 
Publicación seriada: Sensors 
Resumen: The main goal of brain cancer surgery is to perform an accurate resection of the tumor, preserving as much normal brain tissue as possible for the patient. The development of a non-contact and label-free method to provide reliable support for tumor resection in real-time during neurosurgical procedures is a current clinical need. Hyperspectral imaging is a non-contact, non-ionizing, and label-free imaging modality that can assist surgeons during this challenging task without using any contrast agent. In this work, we present a deep learning-based framework for processing hyperspectral images of in vivo human brain tissue. The proposed framework was evaluated by our human image database, which includes 26 in vivo hyperspectral cubes from 16 different patients, among which 258,810 pixels were labeled. The proposed framework is able to generate a thematic map where the parenchymal area of the brain is delineated and the location of the tumor is identified, providing guidance to the operating surgeon for a successful and precise tumor resection. The deep learning pipeline achieves an overall accuracy of 80% for multiclass classification, improving the results obtained with traditional support vector machine (SVM)-based approaches. In addition, an aid visualization system is presented, where the final thematic map can be adjusted by the operating surgeon to find the optimal classification threshold for the current situation during the surgical procedure.
URI: http://hdl.handle.net/10553/58284
ISSN: 1424-8220
DOI: 10.3390/s19040920
Fuente: Sensors [ISSN 1424-8220], v. 19 (4), artículo 920
Colección:Artículos
miniatura
pdf
Adobe PDF (10,3 MB)
Vista completa

Citas SCOPUSTM   

123
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

99
actualizado el 17-nov-2024

Visitas

82
actualizado el 14-oct-2023

Descargas

117
actualizado el 14-oct-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.