Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/55057
Título: On Zlámal minimum angle condition for the longest-edge n-section algorithm with n ≥ 4
Autores/as: Korotov, Sergey
Plaza, Ángel 
Suárez, José P. 
Moreno, Tania
Clasificación UNESCO: 120603 Análisis de errores
Fecha de publicación: 2019
Publicación seriada: Lecture Notes in Computational Science and Engineering 
Conferencia: European Conference on Numerical Mathematics and Advanced Applications, ENUMATH 2017 
Resumen: In this note we analyse the classical longest-edge n-section algorithm applied to the simplicial partition in Rd, and prove that an infinite sequence of simplices violating the Zlámal minimum angle condition, often required in finite element analysis and computer graphics, is unavoidably produced if n ≥ 4. This result implies the fact that the number of different simplicial shapes produced by this version of n-section algorithms is always infinite for any n ≥ 4.
URI: http://hdl.handle.net/10553/55057
ISBN: 978-3-319-96414-0
ISSN: 1439-7358
DOI: 10.1007/978-3-319-96415-7_68
Fuente: Radu F., Kumar K., Berre I., Nordbotten J., Pop I. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2017. ENUMATH 2017. Lecture Notes in Computational Science and Engineering, vol 126, p. 737-742. Springer, Cham
Colección:Actas de congresos
Vista completa

Visitas

85
actualizado el 09-sep-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.