Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/54979
Título: Mouse ICM Organoids Reveal Three-Dimensional Cell Fate Clustering
Autores/as: Mathew, Biena
Muñoz-Descalzo, Silvia 
Corujo-Simon, Elena
Schröter, Christian
Stelzer, Ernst H.K.
Fischer, Sabine C.
Clasificación UNESCO: 32 Ciencias médicas
2406 Biofísica
320102 Genética clínica
Palabras clave: Embryonic Stem-Cells
Primitive Endoderm
Lineage Segregation
Differentiation
Mass, et al.
Fecha de publicación: 2019
Publicación seriada: Biophysical journal (Print) 
Resumen: During mammalian preimplantation, cells of the inner cell mass (ICM) adopt either an embryonic or an extraembryonic fate. This process is tightly regulated in space and time and has been studied previously in mouse embryos and embryonic stem cell models. Current research suggests that cell fates are arranged in a salt-and-pepper pattern of random cell positioning or a spatially alternating pattern. However, the details of the three-dimensional patterns of cell fate specification have not been investigated in the embryo nor in in vitro systems. We developed ICM organoids as a, to our knowledge, novel three-dimensional in vitro stem cell system to model mechanisms of fate decisions that occur in the ICM. ICM organoids show similarities to the in vivo system that arise regardless of the differences in geometry and total cell number. Inspecting ICM organoids and mouse embryos, we describe a so far unknown local clustering of cells with identical fates in both systems. These findings are based on the three-dimensional quantitative analysis of spatiotemporal patterns of NANOG and GATA6 expression in combination with computational rule-based modeling. The pattern identified by our analysis is distinct from the current view of a salt-and-pepper pattern. Our investigation of the spatial distributions both in vivo and in vitro dissects the contributions of the different parts of the embryo to cell fate specifications. In perspective, our combination of quantitative in vivo and in vitro analyses can be extended to other mammalian organisms and thus creates a powerful approach to study embryogenesis.
URI: http://hdl.handle.net/10553/54979
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2018.11.011
Fuente: Biophysical Journal [ISSN 0006-3495], v. 116 (1), p. 127-141, (Enero 2019)
Colección:Artículos
Vista completa

Citas SCOPUSTM   

23
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

22
actualizado el 15-dic-2024

Visitas

65
actualizado el 09-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.