Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/54884
Título: | There are simple and robust refinements (almost) as good as Delaunay | Autores/as: | Márquez, Alberto Moreno-González, Auxiliadora Plaza, Ángel Suárez, José P. |
Clasificación UNESCO: | 120601 Construcción de algoritmos | Palabras clave: | Longest-Side Partition Mesh Generation Algorithms Quality Triangles, et al. |
Fecha de publicación: | 2014 | Publicación seriada: | Mathematics and Computers in Simulation | Resumen: | A new edge-based partition for triangle meshes is presented, the Seven Triangle Quasi-Delaunay partition (7T-QD). The proposed partition joins together ideas of the Seven Triangle Longest-Edge partition (7T-LE), and the classical criteria for constructing Delaunay meshes. The new partition performs similarly compared to the Delaunay triangulation (7T-D) with the benefit of being more robust and with a cheaper cost in computation. It will be proved that in most of the cases the 7T-QD is equal to the 7T-D. In addition, numerical tests will show that the difference on the minimum angle obtained by the 7T-QD and by the 7T-D is negligible. | URI: | http://hdl.handle.net/10553/54884 | ISSN: | 0378-4754 | DOI: | 10.1016/j.matcom.2012.06.001 | Fuente: | Mathematics and Computers in Simulation [ISSN 0378-4754], v. 106, p. 84-94 |
Colección: | Artículos |
Citas SCOPUSTM
2
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
1
actualizado el 15-dic-2024
Visitas
114
actualizado el 16-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.