Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/52820
Título: | Image quantization by nonlinear smoothing | Autores/as: | Alvarez, Luis Esclarín, Julio |
Clasificación UNESCO: | 120601 Construcción de algoritmos 120602 Ecuaciones diferenciales 220990 Tratamiento digital. Imágenes |
Palabras clave: | Dynamic programming Image processing Image quantization Lloyd energie Multiscale analysis, et al. |
Fecha de publicación: | 1995 | Publicación seriada: | Proceedings of SPIE - The International Society for Optical Engineering | Conferencia: | Conference on Investigative and Trial Image Processing | Resumen: | We present a quantization technique based on the partial differential equation (Equation presented) where (Equation presented) represents the derivative of the function u in the direction orthogonal to the gradient, Gσ is a linear convolution kernel, g is a decreasing function and f(s,t) is a lipschitz function. We assume that when t tends to +∞, f(s, t) tends uniformly to a function f∞(s) which has a finite number of zeros with negative derivative which act as atractors in the system and represent the quantization levels. The location of the zero-crossing of the function f∞(s) depends on the histogram of the initial image given by u0. We introduce a new energie based in the Lloyd model to compute the quantizer levels. We develop a numerical scheme to discretize the above equation and we present some experimental results. | URI: | http://hdl.handle.net/10553/52820 | ISBN: | 0-8194-1926-5 978-0-8194-1926-2 |
ISSN: | 0277-786X | DOI: | 10.1117/12.218473 | Fuente: | Proceedings of SPIE - The International Society for Optical Engineering [ISSN 0277-786X], v. 2567, p. 182-192, (Septiembre 1995) |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.