Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/52820
Título: Image quantization by nonlinear smoothing
Autores/as: Alvarez, Luis 
Esclarín, Julio 
Clasificación UNESCO: 120601 Construcción de algoritmos
120602 Ecuaciones diferenciales
220990 Tratamiento digital. Imágenes
Palabras clave: Dynamic programming
Image processing
Image quantization
Lloyd energie
Multiscale analysis, et al.
Fecha de publicación: 1995
Publicación seriada: Proceedings of SPIE - The International Society for Optical Engineering 
Conferencia: Conference on Investigative and Trial Image Processing 
Resumen: We present a quantization technique based on the partial differential equation (Equation presented) where (Equation presented) represents the derivative of the function u in the direction orthogonal to the gradient, Gσ is a linear convolution kernel, g is a decreasing function and f(s,t) is a lipschitz function. We assume that when t tends to +∞, f(s, t) tends uniformly to a function f∞(s) which has a finite number of zeros with negative derivative which act as atractors in the system and represent the quantization levels. The location of the zero-crossing of the function f∞(s) depends on the histogram of the initial image given by u0. We introduce a new energie based in the Lloyd model to compute the quantizer levels. We develop a numerical scheme to discretize the above equation and we present some experimental results.
URI: http://hdl.handle.net/10553/52820
ISBN: 0-8194-1926-5
978-0-8194-1926-2
ISSN: 0277-786X
DOI: 10.1117/12.218473
Fuente: Proceedings of SPIE - The International Society for Optical Engineering [ISSN 0277-786X], v. 2567, p. 182-192, (Septiembre 1995)
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.