Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/51611
Título: | Average adjacencies for tetrahedral skeleton-regular partitions | Autores/as: | Plaza, A. Rivara, M. C. |
Clasificación UNESCO: | 120601 Construcción de algoritmos | Palabras clave: | Adjacencies Partitions Tetrahedral meshes |
Fecha de publicación: | 2005 | Publicación seriada: | Journal of Computational and Applied Mathematics | Resumen: | For any conforming mesh, the application of a skeleton-regular partition over each element in the mesh, produces a conforming mesh such that all the topological elements of the same dimension are subdivided into the same number of child-elements. Every skeleton-regular partition has associated special constitutive (recurrence) equations. In this paper the average adjacencies associated with the skeleton-regular partitions in 3D are studied. In three-dimensions different values for the asymptotic number of average adjacencies are obtained depending on the considered partition, in contrast with the two-dimensional case [J. Comput. Appl. Math. 140 (2002) 673]. In addition, a priori formulae for the average asymptotic adjacency relations for any skeleton-regular partition in 3D are provided. | URI: | http://hdl.handle.net/10553/51611 | ISSN: | 0377-0427 | DOI: | 10.1016/j.cam.2004.09.013 | Fuente: | Journal of Computational and Applied Mathematics [ISSN 0377-0427], v. 177 (1), p. 141-158 |
Colección: | Artículos |
Citas SCOPUSTM
5
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
4
actualizado el 17-nov-2024
Visitas
110
actualizado el 09-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.