Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/49717
Título: | Geostatistical medical image registration | Autores/as: | Ruiz-Alzola, J. Suarez, E. Alberola-Lopez, C. Warfield, S. K. Westin, C. F. |
Clasificación UNESCO: | 3325 Tecnología de las telecomunicaciones | Palabras clave: | Image registration Kriging Biomedical imaging |
Fecha de publicación: | 2003 | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 6th International Conference on Medical Image Computing and Computer-Assisted Intervention | Resumen: | We propose a novel approach to landmark-based medical image registration based on the geostatical method of Kriging prediction. Our method exploits the spatial statistical relation between two images, as estimated using general-purpose registration algorithms, in order to construct an optimum predictor of the displacement field. High accuracy is achieved by using an estimated spatial model of the displacement field directly from the image data, while practically circumventing the difficulties that prevented Kriging from being widely used in image registration. | URI: | http://hdl.handle.net/10553/49717 | ISSN: | 0302-9743 | Fuente: | Lecture Notes in Computer Science[ISSN 0302-9743],v. 2879, p. 894-901 |
Colección: | Actas de congresos |
Citas SCOPUSTM
10
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
7
actualizado el 25-feb-2024
Visitas
57
actualizado el 05-oct-2024
Descargas
74
actualizado el 05-oct-2024
Google ScholarTM
Verifica
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.