Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/48262
Título: The effect of ordering on the convergence of the conjugate gradient method for solving preconditioned shifted linear systems
Autores/as: Florez, E. 
García, M. D.
Suárez Sarmiento, Antonio Félix 
Sarmiento, H.
Clasificación UNESCO: 12 Matemáticas
1206 Análisis numérico
Palabras clave: Approximate inverses
Conjugate gradient
Incomplete factorization
Ordering
Preconditioning, et al.
Fecha de publicación: 2006
Conferencia: 5th International Conference on Engineering Computational Technology, ECT 2006 
Resumen: In this paper we study the effect of ordering in the preconditioning of shifted linear systems with matrices depending on a parameter, i.e., A ε χ ε = b ε with A ε = M + ε N symmetric positive definite. We construct two types of preconditioners, both of them dependent on ". We start from a factorized approximate inverse or from an incomplete Cholesky factorization of matrix M, respectively. Although the beneficial effect of the ordering on the convergence of iterative solvers with these preconditioners have been widely studied, there is no evidence of this effect when they are updated in shifted linear systems. To show this, some classical ordering algorithm such as Reverse Cuthill-McKee, Minimum Neighbouring and Multicoloring, are considered. Several numerical experiments are presented in order to show the reduction of computational cost and number of iteration of the preconditioned conjugate gradient method when some standard ordering schemes are applied.
URI: http://hdl.handle.net/10553/48262
ISBN: 978-1-905088-09-6
1905088094
ISSN: 1759-3433
DOI: 10.4203/ccp.84.88
Fuente: Proceedings of the 5th International Conference on Engineering Computational Technology
Colección:Actas de congresos
Vista completa

Visitas

60
actualizado el 28-ene-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.