Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/47208
Título: The effect of orderings on sparse approximate inverse preconditioners for non-symmetric problems
Autores/as: Florez, E. 
García, M. D.
González, L. 
Montero, Gustavo 
Clasificación UNESCO: 12 Matemáticas
Palabras clave: Iterative solvers
Non-symmetric linear systems
Preconditioning
Reordering techniques
Sparse approximate inverse
Fecha de publicación: 2002
Publicación seriada: Advances in Engineering Software 
Conferencia: 2nd International Conference on Engineering Computational Technology/5th International Conference on Computational Structures Technology 
ECT and CST 
Resumen: We experimentally study how reordering techniques affect the rate of convergence of preconditioned Krylov subspace methods for non-symmetric sparse linear systems, where the preconditioner is a sparse approximate inverse. In addition, we show how the reordering reduces the number of entries in the approximate inverse and thus, the amount of storage and computation required for a given accuracy. These properties are illustrated with several numerical experiments taken from the discretization of PDEs by a finite element method and from a standard matrix collection.
URI: https://accedacris.ulpgc.es/handle/10553/47208
ISSN: 0965-9978
DOI: 10.1016/S0965-9978(02)00070-4
Source: Advances in Engineering Software [ISSN 0965-9978], v. 33 (7-10), p. 611-619
Appears in Collections:Actas de congresos
Show full item record

SCOPUSTM   
Citations

5
checked on Jun 8, 2025

WEB OF SCIENCETM
Citations

6
checked on Jun 8, 2025

Page view(s)

122
checked on Oct 31, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.