Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/46950
Título: Fuzzy logic based selera recognition
Autores/as: Das, Abhijit
Pal, Umapada
Ballester, Miguel Angel Ferrer 
Blumenstein, Michael
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Iris recognition
Image segmentation
Feature extraction
biometrics (access control)
fuzzy logic, et al.
Fecha de publicación: 2014
Editor/a: Institute of Electrical and Electronics Engineers (IEEE) 
Publicación seriada: IEEE International Fuzzy Systems conference proceedings 
Conferencia: IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2014) 
Resumen: In this paper a selera recognition and validation system is proposed. Here selera segmentation was performed by Fuzzy logic-based clustering. Since the selera vessels are not prominent, image enhancement was required. A Fuzzy logic-based Brightness Preserving Dynamic Fuzzy Histogram Equalization and discrete Meyer wavelet was used to enhance the vessel patterns. For feature extraction, the Dense Local Binary Pattern (D-LBP) was used. D-LBP patch descriptors of each training image are used to form a bag of features, which is used to produce the training model. Support Vector Machines (SVMs) are used for classification. The UBIRIS version 1 dataset is used here for experimentation. An encouraging Equal Error Rate (EER) of 4.31% was achieved in our experiments.
URI: http://hdl.handle.net/10553/46950
ISBN: 9781479920723
ISSN: 1544-5615
DOI: 10.1109/FUZZ-IEEE.2014.6891684
Fuente: 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) [ISSN 1544-5615], p. 561-568
Colección:Actas de congresos
miniatura
Adobe PDF (931,6 kB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.