Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/46148
Título: Vessel identification study for non-coherent high-resolution radar
Autores/as: Carmona-Duarte, Cristina 
Ferrer-Ballester, Miguel Ángel 
Calvo-Gallego, Jaime
Dorta-Naranjo, B. Pablo 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Support vector machines
Radar imaging
Doppler radar
Frequency modulation
Error analysis
Fecha de publicación: 2013
Publicación seriada: Proceedings - International Carnahan Conference on Security Technology 
Conferencia: 47th International Carnahan Conference on Security Technology (ICCST) 
2013 47th International Carnahan Conference on Security Technology, ICCST 2013 
Resumen: This paper presents a vessel identification study based on vessel profile. The study was developed with real data obtained with high-resolution Continuous Wave Lineal Frequency Modulated (CW-LFM) radar. Cases studied in this work are vessels entering and leaving the harbor. Also, in this paper, a comparison between different classification techniques such as Neural Networks, Support Vector Machine and k-Nearest Neighbor is introduced. The differences between normalization methods are evaluated for each classification technique.
URI: http://hdl.handle.net/10553/46148
ISBN: 9781479908899
ISSN: 1071-6572
DOI: 10.1109/CCST.2013.6922052
Fuente: Proceedings - International Carnahan Conference on Security Technology[ISSN 1071-6572] (6922052)
Colección:Actas de congresos
miniatura
Adobe PDF (2,79 MB)
Vista completa

Visitas

63
actualizado el 09-mar-2024

Descargas

139
actualizado el 09-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.