Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/46148
Título: Vessel identification study for non-coherent high-resolution radar
Autores/as: Carmona-Duarte, Cristina 
Ferrer-Ballester, Miguel Ángel 
Calvo-Gallego, Jaime
Dorta-Naranjo, B. Pablo 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Support vector machines
Radar imaging
Doppler radar
Frequency modulation
Error analysis
Fecha de publicación: 2013
Publicación seriada: Proceedings - International Carnahan Conference on Security Technology 
Conferencia: 47th International Carnahan Conference on Security Technology (ICCST) 
2013 47th International Carnahan Conference on Security Technology, ICCST 2013 
Resumen: This paper presents a vessel identification study based on vessel profile. The study was developed with real data obtained with high-resolution Continuous Wave Lineal Frequency Modulated (CW-LFM) radar. Cases studied in this work are vessels entering and leaving the harbor. Also, in this paper, a comparison between different classification techniques such as Neural Networks, Support Vector Machine and k-Nearest Neighbor is introduced. The differences between normalization methods are evaluated for each classification technique.
URI: http://hdl.handle.net/10553/46148
ISBN: 9781479908899
ISSN: 1071-6572
DOI: 10.1109/CCST.2013.6922052
Fuente: Proceedings - International Carnahan Conference on Security Technology[ISSN 1071-6572] (6922052)
Colección:Actas de congresos
miniatura
Adobe PDF (2,79 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.