Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/46063
Título: | Recent Theoretical and Experimental Results on Inertial Fusion Energy Physics | Autores/as: | Velarde, G. Perlado, J. M. Alonso, M. Bravo, E. Cabellos, O. Domínguez, E. Eliezer, S. Falquina, R. Rubiano, JG Gil, JM Del Río, J. G. González, A. I. León, P. T. Lodi, D. Marian, J. Martel, P. Martínez-Val, J. M. Mínguez, E. Ogando, F. Piera, M. Prieto, J. Relaño, A. Reyes, S. Rodríguez, A. Rodriguez, R Salvador, M. Sanz, J. Senz, D. G. Sauvan, P. Velarde, M. Velarde, P. |
Clasificación UNESCO: | 2207 Física atómica y nuclear | Palabras clave: | Laser interaction matter | Fecha de publicación: | 2003 | Editor/a: | 0277-786X | Publicación seriada: | Proceedings of SPIE - The International Society for Optical Engineering | Conferencia: | ECLIM 2002: 27th European Conference on Laser Interaction with Matter | Resumen: | We study with ARWEN code a target design for ICF based on jet production. ARWEN is 2D Adaptive Mesh Refinement fluid dynamic and multigroup radiation transport. We are designing, by using also ARWEN, a target for laboratory simulation of astrophysical phenomena. We feature an experimental device to reproduce collisions of two shock waves, scaled to roughly represent cosmic supernova remnants. ANALOP code uses parametric potentials fitting to self-consistent potentials, it includes temperature and density effects by linearized Debye-Huckel and it treats excited configurations and H+He-like lines. Other is an average SHM using the parametric potentials above described. H-like emissivities and opacities have been simulated, using both, for Al and F plasmas with density 1023 cm-3 and temperatures higher than 200 eV. Advanced fusion cycles, as the aneutronic proton-boron 11 reaction, require very high ignition temperatures. Plasma conditions for a fusion-burning wave to propagate at such temperatures are rather extreme and complex, because of the overlapping effects of the main energy transport mechanisms. Calculations on the most appropriate ICF regimes for this purpose are presented. A new Monte Carlo procedure estimates effect of activation cross section uncertainties in the accuracy of inventory calculations, based on simultaneous random sampling of all the cross sections; it is implemented in activation code ACAB. We apply, with LLNL, to NIF gunite chamber shielding with reference pulsing operation. Preliminary results show that the 95 percentile of the distribution of the relative error of the contact dose rate can take values up to 1.2. Model is promising for uncertainty analysis of pulsed activation in IFE PP by using a continuous-pulsed model. Neutron intensities versus time after target emission are presented for IFE protections: LiPb/Flibe, including spectral effects. HT evaluation indicates that 90-98% of the total dose comes from ingestion of agriculture and meat, and the rest from inhalation by re-emission. A multiscale modeling (MM) study of pulse irradiation in Fe is presented up to microscopy; we give differences with continuous irradiation. Experimental validation of MM, using Fe+ in Fe, is being performed under VENUS II Spanish project with CIEMAT. Multiscale Modeling of SiC is reported; new defects energetic emerge using a new tight-binding molecular dynamics which has been proved in basic crystal parameters. | URI: | http://hdl.handle.net/10553/46063 | ISBN: | 0-8194-5101-0 | ISSN: | 0277-786X | DOI: | 10.1117/12.536580 | Fuente: | Laser Interaction With Matter [ISSN 0277-786X], v. 5228, p. 196-206 |
Colección: | Actas de congresos |
Visitas
62
actualizado el 23-ene-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.