Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/44084
Título: | On the relevance of image acquisition resolution for hand geometry identification based on MLP | Autores/as: | Ferrera, Miguel A. Fàbregas, Joan Faundez-Zanuy, Marcos Alonso, Jesús B. Travieso, Carlos Sacristan, Amparo |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Biometrics, Neural networks, Hand-geometry, Resolution | Fecha de publicación: | 2009 | Editor/a: | 0922-6389 | Publicación seriada: | Frontiers in Artificial Intelligence and Applications | Conferencia: | 19th Italian Workshop of the Italian-Society-for-Neural-Network (SIREN) on Neural Nets (WIRN) | Resumen: | The effect of changing the image resolution over a biometric system based on hand geometry is analyzed in this paper. Image resolution is progressively diminished from an initial 120dpi resolution up to 24dpi. The robustness of the examined system is analyzed with 2 databases and two identifiers. The first database acquires the images of the hand underneath whereas the second database acquires the images over the hand. The first classifier identifies with a multiclass support vector machine whereas the second classifier identifies with a neural network with error correction output codes. The four experiments show that an image resolution of 72dpi offers a good trade-off between performance and image resolution for the 15 geometric features used. | URI: | http://hdl.handle.net/10553/44084 | ISBN: | 9781607500728 | ISSN: | 0922-6389 | DOI: | 10.3233/978-1-60750-072-8-314 | Fuente: | Frontiers in Artificial Intelligence and Applications[ISSN 0922-6389],v. 204, p. 314-322 |
Colección: | Actas de congresos |
Visitas
55
actualizado el 27-jul-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.