Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44080
Título: Automatic recognition of leaves by shape detection pre-processing with ica
Autores/as: Solé-Casals, Jordi
Travieso, Carlos M. 
Ferrer, Miguel A. 
Alonso, Jesús B. 
Briceflo, Juan Carlos
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Pattern Recognition, Artificial Neural Networks, Independent Component Analysis, Leaves Recognition, Parameterization
Fecha de publicación: 2009
Publicación seriada: BIOSIGNALS 2009 - Proceedings of the 2nd International Conference on Bio-Inspired Systems and Signal Processing
Conferencia: 2nd International Conference on Bio-Inspired Systems and Signal Processing 
2nd International Conference on Bio-Inspired Systems and Signal Processing, BIOSIGNALS 2009 
Resumen: In this work we present a simulation of a recognition process with perimeter characterization of a simple plant leaves as a unique discriminating parameter. Data coding allowing for independence of leaves size and orientation may penalize performance recognition for some varieties. Border description sequences are then used to characterize the leaves. Independent Component Analysis (ICA) is then applied in order to study which is the best number of components to be considered for the classification task, implemented by means of an Artificial Neural Network (ANN). Obtained results with ICA as a pre-processing tool are satisfactory, and compared with some references our system improves the recognition success up to 80.8% depending on the number of considered independent components.
URI: http://hdl.handle.net/10553/44080
ISBN: 9789898111654
Fuente: BIOSIGNALS 2009 - Proceedings of the 2nd International Conference on Bio-Inspired Systems and Signal Processing, p. 462-467
Colección:Actas de congresos
Vista completa

Visitas

77
actualizado el 27-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.