Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/44012
Título: | Application of the Teager-Kaiser energy operator in bearing fault diagnosis | Autores/as: | Henríquez Rodríguez, Patricia Alonso, Jesús B. Ferrer, Miguel A. Travieso, Carlos M. |
Clasificación UNESCO: | 3307 Tecnología electrónica | Palabras clave: | Vibration fault diagnosis, Teager–Kaiser energy operator, Feature selection, Neural networks, LS-SVM | Fecha de publicación: | 2013 | Editor/a: | 0019-0578 | Publicación seriada: | ISA Transactions | Resumen: | Condition monitoring of rotating machines is important in the prevention of failures. As most machine malfunctions are related to bearing failures, several bearing diagnosis techniques have been developed. Some of them feature the bearing vibration signal with statistical measures and others extract the bearing fault characteristic frequency from the AM component of the vibration signal. In this paper, we propose to transform the vibration signal to the Teager–Kaiser domain and feature it with statistical and energy-based measures. A bearing database with normal and faulty bearings is used. The diagnosis is performed with two classifiers: a neural network classifier and a LS-SVM classifier. Experiments show that the Teager domain features outperform those based on the temporal or AM signal. | URI: | http://hdl.handle.net/10553/44012 | ISSN: | 0019-0578 | DOI: | 10.1016/j.isatra.2012.12.006 | Fuente: | ISA Transactions[ISSN 0019-0578],v. 52, p. 278-284 |
Colección: | Artículos |
Citas SCOPUSTM
113
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
90
actualizado el 17-nov-2024
Visitas
57
actualizado el 25-nov-2023
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.