Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/44012
Título: Application of the Teager-Kaiser energy operator in bearing fault diagnosis
Autores/as: Henríquez Rodríguez, Patricia
Alonso, Jesús B. 
Ferrer, Miguel A. 
Travieso, Carlos M. 
Clasificación UNESCO: 3307 Tecnología electrónica
Palabras clave: Vibration fault diagnosis, Teager–Kaiser energy operator, Feature selection, Neural networks, LS-SVM
Fecha de publicación: 2013
Editor/a: 0019-0578
Publicación seriada: ISA Transactions 
Resumen: Condition monitoring of rotating machines is important in the prevention of failures. As most machine malfunctions are related to bearing failures, several bearing diagnosis techniques have been developed. Some of them feature the bearing vibration signal with statistical measures and others extract the bearing fault characteristic frequency from the AM component of the vibration signal. In this paper, we propose to transform the vibration signal to the Teager–Kaiser domain and feature it with statistical and energy-based measures. A bearing database with normal and faulty bearings is used. The diagnosis is performed with two classifiers: a neural network classifier and a LS-SVM classifier. Experiments show that the Teager domain features outperform those based on the temporal or AM signal.
URI: http://hdl.handle.net/10553/44012
ISSN: 0019-0578
DOI: 10.1016/j.isatra.2012.12.006
Fuente: ISA Transactions[ISSN 0019-0578],v. 52, p. 278-284
Colección:Artículos
Vista completa

Citas SCOPUSTM   

113
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

90
actualizado el 17-nov-2024

Visitas

57
actualizado el 25-nov-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.