Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/42857
Título: | Computing Voronoi adjacencies in high dimensional spaces by using linear programming | Autores/as: | Mendez, Juan Lorenzo, Javier |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Voronoi adjacencies Nearest neighbors Machine learning Linear programming |
Fecha de publicación: | 2013 | Publicación seriada: | Springer Proceedings in Mathematics and Statistics | Resumen: | Some algorithms in Pattern Recognition and Machine Learning as neighborhood-based classification and dataset condensation can be improved with the use of Voronoi tessellation. This paper shows the weakness of some existing algorithms of tessellation to deal with high-dimensional datasets. The use of linear programming can improve the tessellation procedures by focusing on Voronoi adjacency. It will be shown that the adjacency test based on linear programming is a version of the polytope search. However, the polytope search procedure provides more information than a simple Boolean test. This paper proposes a strategy to use the additional information contained in the basis of the linear programming algorithm to obtain other tests. The theoretical results are applied to tessellate several random datasets, and also for much-used datasets in Machine Learning repositories. | URI: | http://hdl.handle.net/10553/42857 | ISBN: | 978-1-4614-5075-7 | ISSN: | 2194-1009 | DOI: | 10.1007/978-1-4614-5076-4_3 | Fuente: | Latorre Carmona P., Sánchez J., Fred A. (eds) Mathematical Methodologies in Pattern Recognition and Machine Learning. Springer Proceedings in Mathematics & Statistics, vol 30. Springer, New York, NY |
Colección: | Actas de congresos |
Citas SCOPUSTM
1
actualizado el 01-dic-2024
Visitas
113
actualizado el 19-oct-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.