Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42857
Título: Computing Voronoi adjacencies in high dimensional spaces by using linear programming
Autores/as: Mendez, Juan 
Lorenzo, Javier 
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Voronoi adjacencies
Nearest neighbors
Machine learning
Linear programming
Fecha de publicación: 2013
Publicación seriada: Springer Proceedings in Mathematics and Statistics 
Resumen: Some algorithms in Pattern Recognition and Machine Learning as neighborhood-based classification and dataset condensation can be improved with the use of Voronoi tessellation. This paper shows the weakness of some existing algorithms of tessellation to deal with high-dimensional datasets. The use of linear programming can improve the tessellation procedures by focusing on Voronoi adjacency. It will be shown that the adjacency test based on linear programming is a version of the polytope search. However, the polytope search procedure provides more information than a simple Boolean test. This paper proposes a strategy to use the additional information contained in the basis of the linear programming algorithm to obtain other tests. The theoretical results are applied to tessellate several random datasets, and also for much-used datasets in Machine Learning repositories.
URI: http://hdl.handle.net/10553/42857
ISBN: 978-1-4614-5075-7
ISSN: 2194-1009
DOI: 10.1007/978-1-4614-5076-4_3
Fuente: Latorre Carmona P., Sánchez J., Fred A. (eds) Mathematical Methodologies in Pattern Recognition and Machine Learning. Springer Proceedings in Mathematics & Statistics, vol 30. Springer, New York, NY
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

1
actualizado el 01-dic-2024

Visitas

113
actualizado el 19-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.