Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/42520
Título: | A mathematical proof of how fast the diameters of a triangle mesh tend to zero after repeated trisection | Autores/as: | Perdomo, Francisco Plaza, Angel Quevedo E. Suárez, José P. |
Clasificación UNESCO: | 120601 Construcción de algoritmos | Palabras clave: | Longest-edge Triangle subdivision Trisection Mesh refinement Finite element method |
Fecha de publicación: | 2014 | Publicación seriada: | Mathematics and Computers in Simulation | Resumen: | The Longest-Edge (LE) trisection of a triangle is obtained by joining the two points which divide the longest edge in three with the opposite vertex. If LE-trisection is iteratively applied to an initial triangle, then the maximum diameter of the resulting triangles is between two sharpened decreasing functions. This paper mathematically answers the question of how fast the diameters of a triangle mesh tend to zero as repeated trisection is performed, and completes the previous empirical studies presented in the MASCOT 2010 Meeting (Perdomo et al., 2010). | URI: | http://hdl.handle.net/10553/42520 | ISSN: | 0378-4754 | DOI: | 10.1016/j.matcom.2014.08.002 | Fuente: | Mathematics And Computers In Simulation [ISSN 0378-4754], v. 106, p. 95-108 | URL: | https://api.elsevier.com/content/abstract/scopus_id/84908671325 |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.