Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/42520
Título: A mathematical proof of how fast the diameters of a triangle mesh tend to zero after repeated trisection
Autores/as: Perdomo, Francisco 
Plaza, Angel 
Quevedo E. 
Suárez, José P. 
Clasificación UNESCO: 120601 Construcción de algoritmos
Palabras clave: Longest-edge
Triangle subdivision
Trisection
Mesh refinement
Finite element method
Fecha de publicación: 2014
Publicación seriada: Mathematics and Computers in Simulation 
Resumen: The Longest-Edge (LE) trisection of a triangle is obtained by joining the two points which divide the longest edge in three with the opposite vertex. If LE-trisection is iteratively applied to an initial triangle, then the maximum diameter of the resulting triangles is between two sharpened decreasing functions. This paper mathematically answers the question of how fast the diameters of a triangle mesh tend to zero as repeated trisection is performed, and completes the previous empirical studies presented in the MASCOT 2010 Meeting (Perdomo et al., 2010).
URI: http://hdl.handle.net/10553/42520
ISSN: 0378-4754
DOI: 10.1016/j.matcom.2014.08.002
Fuente: Mathematics And Computers In Simulation [ISSN 0378-4754], v. 106, p. 95-108
URL: https://api.elsevier.com/content/abstract/scopus_id/84908671325
Colección:Artículos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.