Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/41863
Título: Spatio-spectral classification of hyperspectral images for brain cancer detection during surgical operations
Autores/as: Fabelo, Himar 
Ortega, Samuel 
Ravi, Daniele
Kiran, B. Ravi
Sosa, Coralia
Bulters, Diederik
Callicó, Gustavo M. 
Bulstrode, Harry
Szolna, Adam
Piñeiro, Juan F.
Kabwama, Silvester
Madroñal, Daniel
Lazcano, Raquel
J-O'Shanahan, Aruma
Bisshopp, Sara
Hernández, María
Baez Quevedo, Abelardo 
Yang, Guang-Zhong
Stanciulescu, Bogdan
Salvador, Rubén
Juárez, Eduardo
Sarmiento, Roberto 
Clasificación UNESCO: 3314 Tecnología médica
Palabras clave: Wavelet Entropy
Resection
Machine
Fecha de publicación: 2018
Proyectos: HypErspectraL Imaging Cancer Detection (HELiCoiD) (CONTRATO Nº 618080) 
Publicación seriada: PLoS ONE 
Resumen: Surgery for brain cancer is a major problem in neurosurgery. The diffuse infiltration into the surrounding normal brain by these tumors makes their accurate identification by the naked eye difficult. Since surgery is the common treatment for brain cancer, an accurate radical resection of the tumor leads to improved survival rates for patients. However, the identification of the tumor boundaries during surgery is challenging. Hyperspectral imaging is a noncontact, non-ionizing and non-invasive technique suitable for medical diagnosis. This study presents the development of a novel classification method taking into account the spatial and spectral characteristics of the hyperspectral images to help neurosurgeons to accurately determine the tumor boundaries in surgical-time during the resection, avoiding excessive excision of normal tissue or unintentionally leaving residual tumor. The algorithm proposed in this study to approach an efficient solution consists of a hybrid framework that combines both supervised and unsupervised machine learning methods. Firstly, a supervised pixel-wise classification using a Support Vector Machine classifier is performed. The generated classification map is spatially homogenized using a one-band representation of the HS cube, employing the Fixed Reference t-Stochastic Neighbors Embedding dimensional reduction algorithm, and performing a K-Nearest Neighbors filtering. The information generated by the supervised stage is combined with a segmentation map obtained via unsupervised clustering employing a Hierarchical K-Means algorithm. The fusion is performed using a majority voting approach that associates each cluster with a certain class. To evaluate the proposed approach, five hyperspectral images of surface of the brain affected by glioblastoma tumor in vivo from five different patients have been used. The final classification maps obtained have been analyzed and validated by specialists. These preliminary results are promising, obtaining an accurate delineation of the tumor area.
URI: http://hdl.handle.net/10553/41863
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0193721
Fuente: PLoS ONE [ISSN 1932-6203], v. 13(3), e0193721
Colección:Artículos
miniatura
Adobe PDF (3,69 MB)
Vista completa

Citas SCOPUSTM   

121
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

110
actualizado el 15-dic-2024

Visitas

99
actualizado el 31-oct-2024

Descargas

114
actualizado el 31-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.