Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/41479
Título: | Automatic detection of cyclic alternating pattern | Autores/as: | Mendonça, Fábio Fred, Ana Mostafa, Sheikh Shanawaz Morgado-Dias, Fernando Ravelo-García, Antonio G. |
Clasificación UNESCO: | 120325 Diseño de sistemas sensores 3307 Tecnología electrónica |
Palabras clave: | Automatic classification CAP A phase |
Fecha de publicación: | 2018 | Proyectos: | Projeto Estratégico LA 9—UID/EEA/50009/2013 | Publicación seriada: | Neural Computing and Applications | Resumen: | The cyclic alternating pattern is a microstructure phasic event, present in the non-rapid eye movement sleep, which has been associated with multiple pathologies, and is a marker of sleep instability that is detected using the electroencephalogram. However, this technique produces a large quantity of information during a full night test, making the task of manually scoring all the cyclic alternating pattern cycles unpractical, with a high probability of miss classification. Therefore, the aim of this work is to develop and test multiple algorithms capable of automatically detecting the cyclic alternating pattern. The employed method first analyses the electroencephalogram signal to extract features that are used as inputs to a classifier that detects the activation (A phase) and quiescent (B phase) phases of this pattern. The output of the classifier was then applied to a finite state machine implementing the cyclic alternating pattern classification. A systematic review was performed to determine the features and classifiers that could be more relevant. Nine classifiers were tested using features selected by a sequential feature selection algorithm and features produced by principal component analysis. The best performance was achieved using a feed-forward neural network, producing, respectively, an average accuracy, sensitivity, specificity and area under the curve of 79, 76, 80% and 0.77 in the A and B phases classification. The cyclic alternating pattern detection accuracy, using the finite state machine, was of 79%. | URI: | http://hdl.handle.net/10553/41479 | ISSN: | 0941-0643 | DOI: | 10.1007/s00521-018-3474-5 | Fuente: | Neural Computing and Applications [ISSN 0941-0643], 4 abril 2018 |
Colección: | Artículos |
Citas SCOPUSTM
25
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
28
actualizado el 17-nov-2024
Visitas
105
actualizado el 27-ene-2024
Descargas
347
actualizado el 27-ene-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.