Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/41479
Título: Automatic detection of cyclic alternating pattern
Autores/as: Mendonça, Fábio
Fred, Ana
Mostafa, Sheikh Shanawaz
Morgado-Dias, Fernando
Ravelo-García, Antonio G. 
Clasificación UNESCO: 120325 Diseño de sistemas sensores
3307 Tecnología electrónica
Palabras clave: Automatic classification
CAP
A phase
Fecha de publicación: 2018
Proyectos: Projeto Estratégico LA 9—UID/EEA/50009/2013
Publicación seriada: Neural Computing and Applications 
Resumen: The cyclic alternating pattern is a microstructure phasic event, present in the non-rapid eye movement sleep, which has been associated with multiple pathologies, and is a marker of sleep instability that is detected using the electroencephalogram. However, this technique produces a large quantity of information during a full night test, making the task of manually scoring all the cyclic alternating pattern cycles unpractical, with a high probability of miss classification. Therefore, the aim of this work is to develop and test multiple algorithms capable of automatically detecting the cyclic alternating pattern. The employed method first analyses the electroencephalogram signal to extract features that are used as inputs to a classifier that detects the activation (A phase) and quiescent (B phase) phases of this pattern. The output of the classifier was then applied to a finite state machine implementing the cyclic alternating pattern classification. A systematic review was performed to determine the features and classifiers that could be more relevant. Nine classifiers were tested using features selected by a sequential feature selection algorithm and features produced by principal component analysis. The best performance was achieved using a feed-forward neural network, producing, respectively, an average accuracy, sensitivity, specificity and area under the curve of 79, 76, 80% and 0.77 in the A and B phases classification. The cyclic alternating pattern detection accuracy, using the finite state machine, was of 79%.
URI: http://hdl.handle.net/10553/41479
ISSN: 0941-0643
DOI: 10.1007/s00521-018-3474-5
Fuente: Neural Computing and Applications [ISSN 0941-0643], 4 abril 2018
Colección:Artículos
miniatura
Adobe PDF (896,03 kB)
Vista completa

Citas SCOPUSTM   

25
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

28
actualizado el 17-nov-2024

Visitas

105
actualizado el 27-ene-2024

Descargas

347
actualizado el 27-ene-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.