Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/16398
Título: A generalization of the optimal diagonal approximate inverse preconditioner
Autores/as: González, Luis 
Suárez Sarmiento, Antonio Félix 
Rodríguez, Eduardo 
Clasificación UNESCO: 120609 Ecuaciones lineales
12 Matemáticas
120610 Matrices
Palabras clave: Approximate inverse preconditioner
Frobenius norm minimization
Diagonal preconditioner
Fecha de publicación: 2014
Publicación seriada: Computers and Mathematics with Applications 
Resumen: The classical optimal (in the Frobenius sense) diagonal preconditioner for large sparse linear systems Ax = b is generalized and improved. The new proposed approximate inverse preconditioner N is based on the minimization of the Frobenius norm of the residual matrix AM _ I, where M runs over a certain linear subspace of n _ n real matrices, defined by a prescribed sparsity pattern. The number of nonzero entries of the n_n preconditioning matrix N is less than or equal to 2n, and n of them are selected as the optimal positions in each of the n columns of matrix N. All theoretical results are justified in detail…
URI: http://hdl.handle.net/10553/16398
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2013.10.004
Fuente: Computers and Mathematics with Applications[ISSN 0898-1221],v. 66, p. 2433-2445
Derechos: by-nc-nd
Colección:Artículos
miniatura
Adobe PDF (340,79 kB)
Vista completa

Visitas

149
actualizado el 08-jun-2024

Descargas

260
actualizado el 08-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.