Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/135603
Título: Climatic controls on metabolic constraints in the ocean
Autores/as: Mongwe, Precious
Long, Matthew
Ito, Takamitsu
Deutsch, Curtis
Santana Falcón, Yeray 
Clasificación UNESCO: 251003 Oceanografía descriptiva
Palabras clave: Climate warming
Deoxygenation
Fecha de publicación: 2024
Proyectos: European Union's Horizon 2020 research and innovation programme under grant agreement no. 820989 (COMFORT)
Publicación seriada: Biogeosciences 
Resumen: Observations and models indicate that climate warming is associated with the loss of dissolved oxygen from the ocean. Dissolved oxygen is a fundamental requirement for heterotrophic marine organisms (except marine mammals) and, since the basal metabolism of ectotherms increases with temperature, warming increases organisms’ oxygen demands. Therefore, warming and deoxygenation pose a compound threat to marine ecosystems. In this study, we leverage an ecophysiological framework and a compilation of empirical trait data quantifying the temperature sensitivity and oxygen requirements of metabolic rates for a range of marine species (“ecotypes”). Using the Community Earth System Model Large Ensemble, we investigate how natural climate variability and anthropogenic forcing impact the ability of marine environments to support aerobic metabolisms on interannual to multi-decadal timescales. Warming and deoxygenation projected over the next several decades will yield a reduction in the volume of viable ocean habitats. We find that fluctuations in temperature and oxygen associated with natural variability are distinct from those associated with anthropogenic forcing in the upper ocean. Further, the joint temperature–oxygen anthropogenic signal emerges sooner than temperature and oxygen independently from natural variability. Our results demonstrate that anthropogenic perturbations underway in the ocean will strongly exceed those associated with the natural system; in many regions, organisms will be pushed closer to or beyond their physiological limits, leaving the ecosystem more vulnerable to extreme temperature–oxygen events.
URI: http://hdl.handle.net/10553/135603
ISSN: 1726-4170
DOI: 10.5194/bg-21-3477-2024
Fuente: Biogeosciences [ISSN 1726-4170], v. 21, n. 15, p. 3477–3490, (Agosto 2024)
Colección:Artículos
Adobe PDF (13,33 MB)
Vista completa

Citas SCOPUSTM   

2
actualizado el 30-mar-2025

Citas de WEB OF SCIENCETM
Citations

2
actualizado el 30-mar-2025

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.