Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/130669
Título: Incorporating Recurrent Networks for Online System Identification Alongside Traditional Sine-Sweep Experiments
Autores/as: Segura, C.A.L.
Clasificación UNESCO: 3304 Tecnología de los ordenadores
330417 Sistemas en tiempo real
Palabras clave: Asymptotic Tracking
Adaptive Models
Online Learning
Artificial Neural Networks
Time-Lagged Recurrent Network (Tlrn), et al.
Fecha de publicación: 2024
Publicación seriada: IEEE Access 
Resumen: The experimental identification of an unknown system, and the blind system identification (BSI) methods, allows engineers to establish mathematical models that represent the real system behavior. However, when the system operates in a non-stationary environments influenced by external disturbances, models with adaptive properties are required for predicting the real-time domain response. This study defines and analyzes in detail two system identification methods. The first method, which operates offline and requires post-processing, is mathematically defined to achieve the highest level of automation. It is based on sine sweep theory and involves conducting long-term experiments on a real system to determine its frequency domain properties. The second method, which operates online, employs computational learning theory and information theory to predict the system response through online learning. This modern approach uses convex optimization to obtain the optimal parameters of a time-lagged recurrent network (TLRN) in each iteration, which incorporates, among other features, a gamma filter as a mapper. This iterative online method was mathematically described addressing stability, convergence, and disturbances issues.
URI: http://hdl.handle.net/10553/130669
ISSN: 2169-3536
DOI: 10.1109/ACCESS.2024.3385236
Fuente: Ieee Access [ISSN 2169-3536] ,v. 12, p. 56033-56041, (2024)
Colección:Artículos
Adobe PDF (1,67 MB)
Vista completa

Visitas

42
actualizado el 09-nov-2024

Descargas

45
actualizado el 09-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.