Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/128848
Título: | Information extraction from electricity invoices through named entity recognition with transformers | Autores/as: | Salgado De La Nuez, Agustín Sánchez Pérez, Javier |
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Machine learning Natural Language Processing (NLP) Named entity recognition Transformer Electricity invoices |
Fecha de publicación: | 2023 | Editor/a: | International Frequency Sensor Association (IFSA) Publishing, S. L. | Conferencia: | 5th International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI 2023) | Resumen: | This article describes a method for automatically extracting information from electricity invoices. This type of documents contains rich information about the billing of each supply point and data about the customer, the contract, or the electricity company. In this work, we train a neural network to classify the input data among eighty-six different labels. We use the IDSEM dataset that contains 75.000 electricity invoices of the Spanish electricity market in PDF format. Each document is converted into text format and the classification is carried out through a named entity recognition (NER) process. The underlying neural network used in the process is a Transformer. The results demonstrate that the proposed method correctly classifies the majority of the labels with high accuracy. Furthermore, the method exhibits robustness in handling invoices with different layouts and contents, highlighting its versatility and reliability. | URI: | http://hdl.handle.net/10553/128848 | ISBN: | 978-84-09-48561-1 | ISSN: | 2938-5350 | DOI: | 10.13140/RG.2.2.27945.77924 | Fuente: | Advances in Signal Processing and Artificial Intelligence. Proceedings of the 5th International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2023), p. 140-145. 7-9 June 2023, Tenerife |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.