Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/11776
Título: Regularizing a set of unstructured 3D points from a sequence of stereo images
Autores/as: Alvarez-Leon, L 
Cuenca Hernández, Carmelo 
Sánchez, Javier 
Clasificación UNESCO: 220990 Tratamiento digital. Imágenes
120601 Construcción de algoritmos
120602 Ecuaciones diferenciales
120326 Simulación
Palabras clave: Fields
Fecha de publicación: 2003
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 4th International Conference on Scale Space Methods in Computer Vision 
Resumen: In this paper we present a method for the regularization of a set of unstructured 3D points obtained from a sequence of stereo images. This method takes into account the information supplied by the disparity maps computed between pairs of images to constraint the regularization of the set of 3D points. We propose a model based on an energy which is composed of two terms: an attachment term that minimizes the distance from 3D points to the projective lines of camera points, and a second term that allows for the regularization of the set of 3D points by preserving discontinuities presented on the disparity maps. We embed this energy in a 2D finite element method. After minimizing, this method results in a large system of equations that can be optimized for fast computations. We derive an efficient implicit numerical scheme which reduces the number of calculations and memory allocations.
URI: http://hdl.handle.net/10553/11776
ISBN: 3-540-40368-X
ISSN: 0302-9743
Fuente: Griffin L.D., Lillholm M. (eds) Scale Space Methods in Computer Vision. Scale-Space 2003. Lecture Notes in Computer Science, vol 2695. Springer, Berlin, Heidelberg
Derechos: by-nc-nd
Colección:Artículos
miniatura
Adobe PDF (1,36 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.