Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/106772
Título: Classification of Hyperspectral In Vivo Brain Tissue Based on Linear Unmixing
Autores/as: Cruz-Guerrero, Ines A.
León Martín, Sonia Raquel 
Campos-Delgado, Daniel U.
Ortega Sarmiento, Samuel 
Fabelo Gómez, Himar Antonio 
Marrero Callicó, Gustavo Iván 
Clasificación UNESCO: 3314 Tecnología médica
Palabras clave: Hyperspectral imaging
Intraoperative imaging
Brain cancer
Linear unmixing
Support vector machine
Fecha de publicación: 2020
Publicación seriada: Applied Sciences 
Resumen: Hyperspectral imaging is a multidimensional optical technique with the potential of providing fast and accurate tissue classification. The main challenge is the adequate processing of the multidimensional information usually linked to long processing times and significant computational costs, which require expensive hardware. In this study, we address the problem of tissue classification for intraoperative hyperspectral images of in vivo brain tissue. For this goal, two methodologies are introduced that rely on a blind linear unmixing (BLU) scheme for practical tissue classification. Both methodologies identify the characteristic end-members related to the studied tissue classes by BLU from a training dataset and classify the pixels by a minimum distance approach. The proposed methodologies are compared with a machine learning method based on a supervised support vector machine (SVM) classifier. The methodologies based on BLU achieve speedup factors of ~459 and ~429 compared to the SVM scheme, while keeping constant and even slightly improving the classification performance
URI: http://hdl.handle.net/10553/106772
ISSN: 2076-3417
DOI: 10.3390/app10165686
Fuente: Applied Sciences [ISSN 2076-3417], n. 10 (16), 5686, (2020)
Colección:Artículos
miniatura
Adobe PDF (3,1 MB)
Vista completa

Citas SCOPUSTM   

19
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

14
actualizado el 17-nov-2024

Visitas

148
actualizado el 24-ago-2024

Descargas

113
actualizado el 24-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.