Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/106772
Título: | Classification of Hyperspectral In Vivo Brain Tissue Based on Linear Unmixing | Autores/as: | Cruz-Guerrero, Ines A. León Martín, Sonia Raquel Campos-Delgado, Daniel U. Ortega Sarmiento, Samuel Fabelo Gómez, Himar Antonio Marrero Callicó, Gustavo Iván |
Clasificación UNESCO: | 3314 Tecnología médica | Palabras clave: | Hyperspectral imaging Intraoperative imaging Brain cancer Linear unmixing Support vector machine |
Fecha de publicación: | 2020 | Publicación seriada: | Applied Sciences | Resumen: | Hyperspectral imaging is a multidimensional optical technique with the potential of providing fast and accurate tissue classification. The main challenge is the adequate processing of the multidimensional information usually linked to long processing times and significant computational costs, which require expensive hardware. In this study, we address the problem of tissue classification for intraoperative hyperspectral images of in vivo brain tissue. For this goal, two methodologies are introduced that rely on a blind linear unmixing (BLU) scheme for practical tissue classification. Both methodologies identify the characteristic end-members related to the studied tissue classes by BLU from a training dataset and classify the pixels by a minimum distance approach. The proposed methodologies are compared with a machine learning method based on a supervised support vector machine (SVM) classifier. The methodologies based on BLU achieve speedup factors of ~459 and ~429 compared to the SVM scheme, while keeping constant and even slightly improving the classification performance | URI: | http://hdl.handle.net/10553/106772 | ISSN: | 2076-3417 | DOI: | 10.3390/app10165686 | Fuente: | Applied Sciences [ISSN 2076-3417], n. 10 (16), 5686, (2020) |
Colección: | Artículos |
Citas SCOPUSTM
19
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
14
actualizado el 17-nov-2024
Visitas
148
actualizado el 24-ago-2024
Descargas
113
actualizado el 24-ago-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.